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Abstract. We describe the use of formal methods in the development of 

IRONSIDES, an implementation of DNS with superior performance to both 

BIND and Windows, the two most common DNS servers on the Internet.  More 

importantly, unlike BIND and Windows, IRONSIDES is impervious to all 

single-packet denial of service attacks and all forms of remote code execution.  

 

Keywords: domain name server, formal methods, software systems, DNS, Ada, 

internet security, computer security, network security, buffer overflows, , 

domain name system, denial of service. 

(Distribution A, Approved for public release, distribution unlimited.) 

1 Introduction 

DNS is a protocol essential to the proper functioning of the Internet.  The two most 

common implementations of DNS are the free software version BIND and the 

implementations that come bundled with various versions of Windows.  

Unfortunately, despite their ubiquity and importance, these implementations suffer 

from security vulnerabilities and require frequent patching.  As of this writing, 

according to the Internet Systems Consortium’s web site, there are 51 known 

vulnerabilities in various versions of BIND [1].  Over the past five years, Microsoft 

has released at least 8 security bulletins relating to vulnerabilities in Windows DNS.  

Since neither of these products have ever been, to our knowledge, formally validated, 

it is likely that further flaws remain for hackers to discover and exploit. 

 

The existence of security flaws in such a vital component of the Internet software 

suite is troubling, to say the least.  These vulnerabilities permit not only bad-packet 

denial of service attacks to crash a DNS server, but in the worst case can actually lead 

to remote code execution exploits, giving the adversary control over the host machine. 

 



 

To address this problem, the authors have used formal methods and the SPARK 

tool set from Praxis Systems [2] to develop a high-performance version of DNS that 

is provably exception-free.  We first give a brief overview of DNS, and our 

implementation of it using the SPARK tools.  We then describe our experimental test 

bed and the results we obtained.  We conclude with lessons learned and directions for 

future work. 

2 Overview of DNS 

DNS is an abbreviation for the Internet’s Domain Name System.  Theoretically it is a 

naming system for any resource connected to the Internet, but in practice it associates 

host names (www.cnn.com) with IP addresses (157.166.226.26).  The DNS protocol 

was developed by Paul Mockapetris, first codified in IETF documents RFC 882 and 

RFC 883 and later superseded by RFC’s 1034 and 1035.   Clients of a DNS server 

interact with it supplying queries of various types, with the server providing the 

answers.  Communication between a DNS client and server takes place at either the 

UDP or TCP layers of the Internet protocol stack. 

The distinguishing feature of DNS is its hierarchical and distributed nature.  

Because it is hierarchical, a single DNS server may not and need not know the answer 

to a client query.  If it does not, it can query another DNS server at a higher level in 

the Internet domain name space for further information.  This process may be 

repeated up to the root server, with further information then propagating back down to 

the original querying server.    

The system’s distributed nature means that there is no central DNS server.  

Hundreds of thousands of implementations of DNS are all running at once, and 

because they all use the same protocols to communicate they all function correctly. 

Simple implementations of DNS may perform solely as authoritative name servers, 

responsible only for managing the IP addresses associated with a particular zone.  To 

reduce the load on the root zone servers and to improve performance of applications 

that rely on nearby DNS servers, more complex implementations of DNS may cache 

query answers as well as fully implement the recursive query protocol described 

previously.   

The most popular implementation of DNS is the Berkeley Internet Name Domain 

server, or BIND.  Originally written in 1984, it has been ported to a number of 

systems and compilers, and has been distributed as free software since its inception.  

According to the Wikipedia entry on DNS, it is the dominant name service software 

on the Internet.  However, numerous alternatives remain available, including 

implementations bundled with Microsoft Windows. 

3 SPARK:  A Tool For Creating Provably Correct Programs 

The SPARK language and toolset from Altran Praxis is used in the creation of 

software systems with provable correctness and security properties.  SPARK is a 

subset of Ada, augmented with special annotations.  These annotations appear as 



ordinary comments to Ada compilers, but are parsed by SPARK’s pre-processing 

tools used to validate the software.  SPARK is a fairly mature technology and has 

been used on several projects [3-5].  Accordingly, given our prior institutional 

experience with Ada (see for example [6]), we chose SPARK and Ada as the platform 

for constructing DNS software that would not be subject to most of the vulnerabilites 

of BIND and Windows versions currently deployed around the globe. 

4 Overview of IRONSIDES 

IRONSIDES is an Ada/SPARK implementation of the DNS protocols.  The 

IRONSIDES authoritative DNS server was described previously in [7]. Since that 

publication, off-line signed DNS records have been added to IRONSIDES using 

DNSSEC, the protocol that adds encryption to DNS transactions to further reduce 

vulnerability to spoofing and other attacks [8].  Below we describe the architecture of 

the IRONSIDES recursive service.  In actual operation, both versions would be 

running concurrently.   

The high level structure of the IRONSIDES recursive service is shown in Figure 1: 

 

 
 

Fig. 1.    High-level structure of IRONSIDES recursive service. 



 

Incoming DNS messages are either queries from a “downstream” client, in which 

case they are placed in a request queue, or responses from an “upstream” server, 

which are placed in a reply queue.  Queries are checked against a DNS record cache 

(not shown).  If appropriate matching records are found, a response DNS message is 

constructed and sent out on the wire back to the requesting server.  Otherwise, the 

query is forwarded to one or more upstream servers.  Responses are sent back to the 

original requesting server and stored in the DNS record cache.  The modules that 

implement the above structure and their data dependency relationships are shown 

below.  Lines indicate a data dependency from the module above on the module 

below.  Transitive dependencies are implied.  

 

Fig. 2.    Module and data dependency representation of IRONSIDES. 
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The functions of these modules are as follows: 

• spark_dns_main:  Top-level executable 

• udp_query_task:  Concurrently executing task responsible for all incoming 

DNS traffic 

• udp_response_task:  Concurrently executing task responsible for managing all 

responses from upstream servers 

• process_dns_request:  Interprets incoming packet, queries DNS table, queues 

query if answer not found 

• wire_to_records:  Builds DNS resource records from DNS packets on the wire 

• dns_network_rcv:  SPARK wrapper for network traffic to guarantee no 

overflows 

• global_buffers:  Query and response queues 

• protected_buffer:  ADT for the query and response queues 

• buffer_pkg:  ADT for a queue 

• dns_table:  Cache of DNS resource records 

• rr_type:  Top-level package for all DNS resource record types 

• dns_network:  Handles low-level network IO 

• dns_types:  Data types for working with DNS packets 

 

As a result of the software validation process, IRONSIDES code is known to be 

free of uninitialized values, data flow errors (e.g. writes that are never read or values 

derived from incorrect sources), array bounds errors, and all runtime exceptions.  This 

renders it invulnerable to single-packet denial of service attacks and all remote 

execution exploits.  If IRONSIDES is properly compiled and configured, it cannot be 

taken over as a result of any external input, no matter when the input arrives and no 

matter how it is formatted.  Also, it cannot be crashed and all its loops are guaranteed 

to terminate, which renders it invulnerable to denial of service attacks that rely on 

badly formatted packets.   

Current statistics on the proof requirements and code size of IRONSIDES 

authoritative are shown in Tables 1 and 2. 

 

Table 1. Proof requirements of IRONSIDES authoritative 

 

Total   Examiner Simplifier   Victor 

Assert/Post          3106   2209          884      13 

Precondition          561         0          532      29 

Check stmt.             12         0           12        0 

Runtime check    3750          0       3704      46 

Refinement. VC s    44       42             2         0   

Inherit. VCs              0         0              0         0 

============================= 

Totals:                  7473       2251       5134      88 

%Totals:                              30%        69%      1% 



 

Table 2. IRONSIDES source lines 

 

Total Lines:                          11598 

Blank Lines:                                871 

Non-blank non-comment lines:      7543 

Lines of SPARK annotations:     1133 

Semicolons:                              5403 

 

 

A “Verification Condition”, or VC, is a theorem that must be proved in order for 

SPARK to consider the program as validated.  Typical VC’s include assertions that 

integers do not overflow or wraparound, that array bounds are not exceeded, and so 

forth.  Simpler VC’s are proved by the Spark Examiner.  More complicated ones are 

proved by the Verifier.  According to AdaCore Technologies [9], over 95% of VCs 

are proven automatically by the SPARK toolset.  In our case, this was 99%.  We were 

unwilling to allow any VCs to remain unproven, lest they be false and lead to a 

security vulnerability.  Consequently, we used Victor, a wrapper for the advanced 

Satisfiability Modulo Theories (SMT) solver Alt-Ergo, developed at the University of 

Paris-Sud [10], to prove the final 1%.  Readers interested in learning more about the 

SPARK tool set are referred to [2]. 

We see from Table 2 that the overhead of SPARK annotations in terms of code 

size and typing time is negligible, approximately ten percent of the total number of 

lines in the program. 

5 Experimental Results 

Having software that is crash-proof is valuable, but unless its performance is 

comparable to existing implementations it is not likely to be accepted by the user 

community.  System administrators, if faced with the choice, might regard software 

vulnerabilities as acceptable risks if fixing them significantly impacts performance.  

Furthermore, from a computer security research perspective, it would be useful to 

understand the nature of the tradeoff between security and performance, or even better 

to discover that in at least some cases no such tradeoff is required.  We present here 

the results of a case study performed to better understand these questions.   

Previous work [7] compared the performance of the IRONSIDES authoritative 

server to BIND running on a Linux system (Ubuntu 11.0).    We now present results 

comparing the performance of IRONSIDES authoritative with BIND and Windows 

DNS on Windows Server 2008.  As in [7], we use the DNS stress testing tool 

‘dnsperf” [11].  Because IRONSIDES is still in development, it does not yet have the 

feature range of BIND or Window DNS (though we are continually adding more 

features and the gap is rapidly closing).  Any comparison should take these 

differences into account. Following the style of [12], we show a comparison of these 

three DNS packages below.  Footnotes and parenthetical comments for BIND and 

Windows are omitted to save space. 



Tables 3a/3b.    Comparison of BIND, Windows and IRONSIDES functionality 

 

Server Authoritative Recursive 
Recursion 

ACL 

Slave 

mode 
Caching 

BIND 

Y Y Y Y Y 

Windows 

DNS 

Y Y N Y Y 

IRONSIDES Y* in progress N N in progress 

 

 

 

DNSSEC Server TSIG  IPv6  Wildcard 
Free 

Software 

split 

horizon  

Y BIND 
Y Y  Y  Y Y 

Y Windows 

DNS 

Y Y Y N N 

offline- 

signed 

IRONSIDES N Y N Y N 

 

 

*The following resource record types are currently supported:  A, AAAA, CNAME,  

DNSKEY, MX, NS, NSEC, PTR, RRSIG, SOA. 

 

  



 

Our experimental test bed is shown in Figure 3: 

 

Fig. 3.    Experimental test bed for performance comparisons of DNS software 

‘dnsperf’ runs on a Backtrack 5.0 client virtual machine.  A Windows Server 2008 

virtual machine is loaded as a server.  Testing is done by starting up the DNS server 

to be tested under the server virtual machine, and then running dnsperf.  Only one 

DNS server is active at a time. 

Since the purpose of the experiment is to measure the computational performance 

of the server, both VMs are loaded on the same computer, in this case an ACE 2600 

Workstation with 8GB of RAM.  Using the same computer for client and server 

eliminates the effect of network latency.  ‘dnsperf’ issues queries over the standard 

DNS port to whichever server is listening.  The server in turn responds as appropriate.  

At the end of a run, the tool generates a performance report. 

We performed three test runs for three DNS implementations and then averaged 

the results, scaling them to queries per millisecond.  The raw data are shown in Table 

4.  Averaged results are shown in Figure 4: 
 

  



Table 4.    Comparison of DNS software (queries per second for three test runs).   

 

BIND 
16478.3 16667.9 17020.0 

IRONSIDES 

37329.1 37814.6 37024.4 

Win DNS 

34188.0 35676.1 35089.3 

 

 

 

 
 

Fig. 4.    Comparison of DNS software (queries per millisecond, averaged) 

The most important result of our experiment is that IRONSIDES not only has better 

security properties than the two most popular DNS servers, but outperforms them as 

well.  On a Windows machine, IRONSIDES is 7% faster than Windows DNS and 

more than twice as fast as BIND.  Given IRONSIDES superior security posture, we 

find these results significant.  They show that one need not sacrifice security for 

performance in software design. 

In fact, it should not be that surprising that there are at least some instances in 

which the use of formal methods can improve performance.  Data flow analysis, for 

example, can identify redundant or ineffective statements that generate unnecessary 
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code.  Code that has been proven exception-free no longer needs run-time bounds 

checking, so that code can be eliminated as well.  

On the other hand, there are also cases where total reliance on formal methods 

negatively impacts performance.  Allowing users to override formal proof 

requirements when appropriate is an important feature that we believe formal methods 

tools should continue to support.   In one case, performing this type of optimization in 

IRONSIDES led to a 14% improvement in performance on a Windows VM.  Since 

such overriding is optional, users in environments where manual verification of 

source code is deemed too risky can revert to the original, formally verified source 

code at some cost in performance.   

IRONSIDES is invulnerable to denial of service attacks caused by badly formatted 

packets that raise exceptions.  But terminating a server is not the only way to deny 

service.  If the server can be thrown into an infinite loop, service is just as effectively 

denied.  IRONSIDES is invulnerable to this form of service denial as well, because 

the tools employed help prove that all of its 85 loops terminate.  This is accomplished 

by using loop invariant assertions to show that loop variables monotonically increase 

and have an upper bound.  This is not accomplished automatically by SPARK, but 

with appropriate loop assertion annotations added by the programmer SPARK can 

assist in showing these properties to be true. 

For example, consider the code below: 

 
-- Amount_Trimmed prevents infinite loop 

while Answer_Count=0 and Amount_Trimmed < RR_Type.WireStringType'Last     

and Natural(Character'Pos(Current_Name (Current_Name'First)))/=0 and 

Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes)loop 

--# assert Answer_Count=0 and Amount_Trimmed>=0 and   

--# Amount_Trimmed<RR_Type.WireStringType'Last 

--# and Output_Bytes <= DNS_Types.Packet_Length_Range'Last and 

--# Current_Qname_Location <=DNS_Types.QNAME_PTR_RANGE(Output_Bytes); 

         Trim_Name(Domainname  => Current_Name, 

            Trimmed_Name       => Trimmed_Name, 

            Qname_Location     => Current_Qname_Location, 

            New_Qname_Location => New_Qname_Location); 

         Create_Response_SOA(Start_Byte => Start_Byte, 

            Domainname      => Trimmed_name, 

            Qname_Location  => New_Qname_Location, 

            Output_Packet   => Output_Packet, 

            Answer_Count    => Answer_Count, 

            Output_Bytes    => Output_Bytes); 

         Current_Name := Trimmed_Name; 

         Current_Qname_Location := New_Qname_Location; 

         Amount_Trimmed := Amount_Trimmed +     

  Natural(Character'Pos(Domainname(Domainname'First))+1); 

      end loop; 

Fig. 5. Using loop invariants to prove termination 

SPARK annotations begin with “--#”.  Here the annotations are loop invariants that 

serve as both a postcondition for one part of the loop and as preconditions for the 

next.  In this case the tools prove that Amount_Trimmed is at all times both non-

negative and below a constant upper bound.  Data flow analysis shows that 

Amount_Trimmed is not modified elsewhere in the loop. Given these properties and 



the last line of the loop, we can conclude that Amount_Trimmed is monotonically 

increasing, therefore the loop terminates. 

   

Note that without the use of this variable and the proof annotations, we could not 

prove loop termination.  This would leave open the possibility for the other 

termination conditions to never be reached, something that could be exploited under 

the right circumstances to deny service through an infinite loop. 

6 Lessons in Humility 

The use of formal methods and the SPARK tools in particular produced results that 

were both impressive and humbling.  Both the authors are experienced software 

engineers, having written compilers, introductory programming environments, circuit 

emulators, and other non-trivial software systems. In addition to over 40 years 

combined computer science teaching experience, we have consulted for both industry 

and government.  Nonetheless, the formal methods tools we employed caught 

boundary conditions and potential problems. Some examples are shown below: 

 

1) The use in a zone file of a domain name consisting of a single character: 

--SPARK caught possible exception if length=1, modified  

--by adding “length > 1 and then” 

if Name(1) = '.' or Name(1) = '-' or (length > 1 and then 

(Name(Length-1) = '.' or Name(Length-1) = '-')) then 

 RetVal := False; 

2) A resource record of length equal to the maximum line length allowed: 
--endIdx might be the maximum value possible, so must 

catch last character here.  Caught by SPARK. 

 if Ctr = EndIdx and numSeparators <= REQ_NUM_SEPARATORS 

then 

 

3) Failure to account for erroneous input: 

 
if Query_Class /= IN_CLASS then   … 

elsif Query_Type = A then   … 

end if; 

--Forgot else to handle erroneous input! Caught by SPARK. 

 

4) Failure to check for subscript overflow: 

 
--copy name from packet to Domainname (null terminated) 

while Integer(Byte) < Integer(Input_Bytes) and then 

Input_Packet.Bytes( 

   Byte)/=0 loop 



 

--this could overflow Domainname array!  Caught by SPARK. 

   Domainname(I) := Input_Packet.Bytes(Byte); 

   I := I + 1; 

   Byte := Byte + 1; 

end loop; 

Domainname(I) := ASCII.NUL; 

 

These are all problems we should and could have detected on our own, but did not.  

Had they gone undetected, they could have led to security holes exploitable by 

hackers, particularly if they had access to source code.  Our experience suggests the 

use of formal methods and tools is an essential part of improving the security 

properties of software.   Using experienced, security-conscious programmers is not 

enough. 

7 Hitting the Sweet Spot 

Much of the emphasis on applying formal reasoning to computer programs has 

focused on proofs program correctness.  This has proven to be quite difficult.  

Correctness properties for all but the most trivial programs are extremely complex, 

requiring elaborate formal models and axiomatic formulations that may be more 

difficult to construct than the original program. 

 

While we anticipate continued progress in the use of formal methods to prove 

program correctness, our results suggest that an exclusive focus on proofs of 

correctness may be causing researchers to miss a“sweet spot“ of opportunity:  Proofs 

of security. 

 

On one end of the spectrum, correctness properties are useful to prove but very 

hard for most interesting programs:  Existing tools and technology are not yet 

sufficiently sophisticated to complete them.  On the other hand, there are properties of 

programs that are easy to prove (correctness of mathematical functions, small 

subroutines, and so forth), but are not particularly interesting or important.  Security 

properties fall into that middle ground of things that are both important to prove and 

provable with existing technology. 

 

With the help of SPARK and the use of Ada, for example, we can formally prove 

the following security properties of the IRONSIDES DNS server: 

 

1) No classic buffer overflow 

2) No incorrect calculation of buffer size 

3) No improper initialization 

4) No ineffective statements 

5) No integer overflow/wraparound 

6) No information leakage 

7) All input validated 



8) No allocation w/o limits (no resource exhaustion) 

9) No improper array indexing 

10) No null pointer dereferencing 

11) No expired pointer dereferencing (use after free) 

12) No type confusion 

13) No race conditions 

14) No incorrect conversions 

15) No uncontrolled format strings 

16) All loops guaranteed to terminate 

 

Problems with all of the above have so vexed BIND that the US Defense Advanced 

Research Projects Agency is funding a program to crowd source it and other 

important software to achieve formal verification of security properties [13].  By 

contrast, because IRONSIDES is written in Ada, a language designed from the 

beginning with software engineering principles in mind, and because a commercially 

backed tool is available for formal analysis of Ada programs, we are able to achieve 

provably exception-free code despite being only two academic researchers employed 

at an undergraduate university. 

8 Conclusions and Future Work 

Our work indicates that the theory and practice of formal methods has progressed 

considerably in the past few years, to the point where formal verification of certain 

desirable properties of software is now achievable at relatively little additional cost.  

Within less than a year, two academics whose primary duties are teaching were 

nonetheless able to produce a verifiably exception-free version of DNS.  We did this 

despite having no prior familiarity with SPARK or indeed any formal language tools 

from industry. 

 

While overriding the requirements for explicit storage initialization does indeed 

permit software engineers to trade security for performance, our results show that in 

general no such tradeoff is required.   The IRONSIDES authoritative server runs 

significantly faster than either BIND or Windows DNS, and does so on a Windows 

“home court“ VM running Windows Server 2008. 

 

IRONSIDES is in the public domain, and is distributed free of charge at http:/ 

/ironsides.martincarlisle.com.  Currently development focuses on the IRONSIDES 

recursive service.  Future work could include testing under other operating systems, 

testing under actual network loading, online zone signing, GUI and web interfaces, 

and other more advanced features.  Other implementations of Internet protocols that 

suffer from security flaws could also benefit from the approach described here. 
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