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IRONSIDES is an open-source Domain Name System (DNS)
server designed using formal methods to reduce DNS 
vulnerabilities to cyber attacks. The use of formal methods gives 
IRONSIDES provable security properties, including the absence 
of numerous security flaws that plague BIND and Windows DNS.  
It also raises an empirical question:  Does the use of formal 
methods to generate provably secure code require sacrificing 
performance?

We present the results of an experimental investigation to 
answer this question.  We compared IRONSIDES to BIND,
Windows DNS, and numerous other DNS servers on both 
Windows and Unix. Our results show IRONSIDES performs
quite well compared to other DNS servers, both proprietary and 
open-source, particularly given the resources expended in its 
development.  This suggests that, at least in the DNS domain, 
increasing security with formal methods to render them less 
vulnerable to cyber attacks does not require sacrificing
performance.

Keywords—Ada, DNS, open source, cyber attack resistance, 
formal methods, internet software, performance analysis, SPARK.

I. INTRODUCTION 

The Domain Name System (DNS) is the internet protocol 
that transforms hostnames (e.g. cnn.com) into IP addresses 
(e.g. 151.101.0.73).  Originally proposed by Mockapetris in 
[1], it is a distributed database protocol that uses the internet as 
a tree structure to manage records containing information about 
machine names and properties.  

Software that implements this protocol is referred to as a 
DNS server.  This term can also describe the machine a 
software DNS server runs on.  Servers that are responsible for 
resolving names in a single zone (typically a company, 
university, or similarly scoped institution) are called 
authoritative servers.  If queried about names outside the zone 
for which they are responsible, authoritative servers reply with 
a failure message, the equivalent of “I don’t know”.

Servers capable of resolving names for any publicly visible 
machine on the internet are called recursive.  They use a 
recursive process to travel up the distributed internet tree 
structure to determine the name of the machine in question.  In 
modern DNS practice, most recursive solvers do not use full 
recursion to traverse the name tree.  Instead, they refer queries 
to a publicly available fully recursive DNS server (for example, 
Google’s public DNS at 8.8.8.8), and then cache the result for 
future use.

DNS is a vital internet protocol.  Unfortunately, because it 
dates from the early days of networking, it contains security 
flaws that require mitigation to prevent malicious actors from 
exploiting the system [2]. Additionally, most DNS software is 
written in older languages with inherent security problems.  
These languages do not lend themselves to rigorous software 
design and provable security properties.  The two most popular 
DNS servers, BIND and WINDNS, have a large number of 
known security flaws that render them vulnerable to cyber 
attacks, including crashing in response to the injection of bad 
data and bugs that permit remote execution [3], [4]. These are 
described in more detail in the sections that follow.

II. PREVIOUS WORK

In an attempt to address the problem of security flaws in 
widely deployed internet software, we developed IRONSIDES, 
a DNS server written in Ada/SPARK [5].  IRONSIDES has 
numerous provable security properties, including an absence of 
remote execution vulnerabilities and invulnerability to 
termination as a result of unexpected or incorrectly formatted 
input.  It runs under both Windows and Linux.  More details 
about IRONSIDES are available in [6] and [7].

Our previous work with IRONSIDES showed that a more 
secure DNS server can be implemented using formal methods 
with relatively low development costs (the work was 
performed by two faculty members at a teaching university 
working on a part-time research grant).  As expected, we were 
not able to offer the full functionality of an internet consortium 
(BIND) or a multibillion dollar software company (WINDNS), 
but we were able to deliver a working authoritative DNS server 
with provably better security than either [6],[7].  This 
suggested that formal methods can and should be used to 
improve the security of both open- and closed-source internet 
software.

The successful development of IRONSIDES raised two 
follow-on questions:  1) Can these successes be duplicated in a 
recursive server, and 2) How does the use of formal methods 
impact performance?  This paper reports our experimental 
investigation of these questions.

III. TESTING ENVIRONMENT

Benchmarking recursive DNS servers is a known hard 
problem. Network traffic, topology, cache management, 
security configurations, operating system choice and system 
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administration policies all affect performance.  The complex 
nature of the name resolution task makes it difficult to control 
for individual variables, to test systems fairly, and to generate 
repeatable results.  There are also a number of benchmarking 
tools to choose from (for example [8] and [9]), each of which 
could affect the results produced.

We have attempted to mitigate these effects by testing all 
servers on a closed network of virtual machines.  One VM 
generates DNS queries, another simulates a connection to the 
internet, and the rest each run a separate server/OS 
combination (either Windows or Ubuntu Linux).  We describe 
this in detail below.

A. Hardware and Software Tools
The underlying hardware for our experiment is an NCS 

Technologies server with a Xenon E5 CPU, 256G of RAM 
and a 3.7TB RAID hard drive, running XenCenter 7 for 
instantiating virtual machines. Each VM has 2G of RAM and 
16G of disk space.  The server can in turn be accessed from 
workstations in the laboratories of the Academy Center for 
Cyberspace Research.

All this is abstracted from the experimenter during testing.
From the experimenter’s point of view, the test bed is best 
viewed as a collection of virtual machines running various 
tools, as shown in Fig. 1:

Fig. 1. Experimental test environment

The virtual machine labeled *PERF runs the benchmarking 
tools.  We chose Nominum’s DNSPerf and ResPerf [10] due 
to their open source nature and free availability to the general 
public.  (DNSPerf is used for authoritative servers, ResPerf for 
recursive servers).  We were confident we could quickly get 
these tools up and running in our environment, and wanted to 
be able to inspect the source code in the event of problems or 
the desire to customize them to meet our needs.  For the results 
shown here, customization was not necessary, the tools were 
built unaltered.

INETSIM is an open-source software suite designed to 
simulate common internet services in a lab environment [11].  
It is used when the behavior of a piece of software is of interest 
but a direct connection to the internet is either unnecessary or 
undesirable.  This could include malware testing, for example, 
or in our case testing DNS servers.  Using INETSIM enabled 
us to eliminate external network traffic and name resolution 
issues from our experiment, focusing exclusively on name 
server performance.  One of the VM’s in the test environment 
is dedicated to running INETSIM.  This machine must be up 
and running when recursive servers are under test.

The VM labeled ROUTER is simply the connection to the 
external internet, used for downloading software.  It does not 

need to be up during testing if no external resources are 
required.

B. DNS servers tested
We tested a total of eight DNS servers, briefly summarized 

below:

1) BIND: Open-source and the industry standard, BIND 
offers a full complement of DNS functions.  Although hard 
numbers are difficult to come by, in 2010 one online computer 
security blog estimated that 85% of DNS servers run BIND 
code [12].  As of three years ago, BIND’s site claimed a 
market share of “over 80%” [13].  

Unfortunately, BIND is rife with security problems.  As of 
this writing, there are 78 known security vulnerabilities 
affecting the current BIND distribution [3].  The provable 
absence of most of these problems in IRONSIDES is described 
in [6] and [7].

2) DJBDNS:  An open-source DNS server developed by 
Daniel J. Bernstein.  Designed specificially with security in 
mind, Dr Bernstein offers $1000 to the first person to publicly 
report a verifiable security hole in his code [14].

3) DNSMASQ:  The default DNS infrastructure for open-
source Unix systems.

4) IRONSIDES: Implemented in Ada/SPARK with 
formally provable security properties.  Described previously.

5) KNOT_DNS:  An open-source, authoritative-only DNS 
server, developed by the Czech Network Internet Consortium 
[15].

6) MARADNS:  A small, open-source DNS server 
developed by Sam Trenholme, designed to be lightweight, 
easy to set up, and very secure [16].

7) POWERDNS:  An open-source DNS server provided by 
a commercial company [17].

8) WINDNS:  Microsoft’s DNS server that comes bundled 
with Windows. A longstanding industry standard like BIND, 
it is also known to have numerous security vulnerabilities [4]
provably absent from IRONSIDES.

Of all the servers listed above, only IRONSIDES has 
formally proven security properties.

C. Experimental Protocol
Testing authoritative servers is fairly simple.  All servers 

are configured with a zone file containing various DNS record 
entries for machines in the mock zone “dfcs.usafa.edu”.  
DNSPerf is then activated on the benchmarking VM, and run 
under various shell scripts to send queries at varying rates to 
the server under test.  The query is issued to the target server, 
the server responds, and the information is logged.  At the end 
of the run, data is dumped for performance analysis and 
processed with further shell scripts.  This is shown in Fig. 2.
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Fig. 2. Authoritative server testing

Testing recursive servers is more complicated.  Resperf is 
activated on the benchmarking machine and pointed to the 
target.  First, it sends a query to the machine running the server 
under test.  The server then forwards the query to the machine 
running INETSIM (which includes a DNS server simulator).  
This simulates the forwarding of a query to a publicly available 
DNS server, something many DNS servers now do.

INETSIM returns a mock address (the same one for all 
queries) to the resolver under test.  That information is cached, 
and then forwarded to the machine running Resperf.  Further 
queries for that same host name will be handled exclusively by 
the target as long as the entry remains in the cache. This 
process is shown in Fig. 3:

Fig. 3. Recursive server testing

IV. EXPERIMENTAL RESULTS

DNS server performance analysis is hard because there are 
many different metrics by which DNS performance can be 
measured.  This is further complicated by individual server 
query management policies.  For example, some servers can 
choose to simply ignore queries when they become too busy, 
while others may attempt to handle all queries they receive to 
the maximum extent possible given the limits of their internal 
data structures.

To maximize the repeatability of these results and fairness 
of cross-server comparisons, we explicitly define our 
performance metrics as follows:

Maximum queries per second (qps): For authoritative 
servers, this is the maximum number of queries that DNSperf 
reports that the server under test was able to sustain.  For 
recursive servers, this is the command line argument to 
Resperf, and appears as an x-axis label in the figures below. It 
is the maximum number of queries per second that Resperf 
attempts to send to a server during a particular test run.

Latency:  The time between a query initiation and response 
as reported by DNSperf or Resperf.

Queries sent: The total number of queries the tool was able 
to send to the server during a test run. 

% Queries lost: The percentage of queries that were either 
unanswered or were answered with SERVFAIL.  We count 
failures as lost queries because there is no reason in our test 
environment to fail other than the inability of the server to 
handle the load.  

Successful queries per second: The total number of queries 
sent minus the number of lost queries, divided by the length of 
the test run.

A. Authoritative server performance
Because DNSperf is intended solely for authoritative 

servers, it only reports the maximum number of queries per 
second it was able to achieve.  

Figs. 4 and 5 show the maximum qps values we obtained 
for authoritative servers under Unix and Windows respectively.

Fig. 4. Max queries per second for authoritative servers running Unix
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Fig. 5. Max queries per second for recursive servers running Unix

For Unix, IRONSIDES exhibits significantly higher max 
qps than any others we tested, more than twice that of  BIND, 
its next closest competitor.  For Windows, WINDNS performs 
better, but only slightly (7%).  

We would expect WINDNS to perform better under 
Windows due to its developers’ access to the OS kernel and its 
associated tight integration with the host system.    That said, 
we believe the relatively small difference in performance 
compared to IRONSIDES is significant, particularly when 
comparing the resources of a multibillion dollar software 
company to an academic research laboratory at an 
undergraduate institition.

B. Recursive server performance
Recursive servers were tested with Resperf with 

successively increasing values of maximum qps on the 
command line.  As these values increase, server load becomes 
heavier, more queries are dropped, and latency declines or 
flattens out.  The maximum qps for a given run appears as an 
x-axis label, with the metric reported on the y-axis.

1) Queries Sent: Fig. 6 shows the total number of queries 
sent as a function of max qps for our tested DNS servers on 
Unix systems:

Fig. 6. Total queries sent vs max qps for recursive servers running Unix

Up to 1500 qps, the performance of the servers is 
essentially indistinguishable.  At higher values, DNSMASQ, 

IRONSIDES and DJBDNS drop off fairly quickly.  BIND was 
able to accept the most queries.  

Similar results are seen in Fig. 7 for Windows systems, in 
that for smaller qps values the results are indistinguishable.  
Similar to the UNIX results, IRONSIDES drops off for higher 
qps, but interestingly so does WINDNS.  BIND once again 
accepted the most queries, a total of about 302,000 over an 80-
second run at 4000 qps.

Fig. 7. Total queries sent vs max qps for recursive servers running Windows

2) Queries Lost: Figs. 8 and 9 below show the percentage 
of queries lost as a function of  max qps for Unix and 
Windows systems.  For this metric, lower is better. Values are 
rounded to one decimal place, so points that appear to be zero 
are actually small but non-zero values.

Fig. 8. % queries lost vs max qps for recursive servers running Unix

Fig. 9. % queries lost vs max qps for recursive servers running Windows
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For Unix systems, the best performers in this area were  
DJBDNS, DNSMASQ, and IRONSIDES, all losing a 
miniscule percentage of queries at the highest loads tested.  
BIND did the worst at this metric, reflecting its policy of 
reporting SERVFAIL at its discretion to optimize its internal 
performance.

For Windows systems, the performance of WINDNS 
and IRONSIDES on this metric are indistinguishable, both 
dropping a very tiny percentage of queries at the highest loads 
tested.  MARADNS dropped the most at about 60%, with 
BIND at 18%.

3) Successful Queries vs Max Queries Per Second: Figs. 
10 and 11 show the number of successful queries versus max 
qps for Unix and Windows systems.

Fig. 10. Successful queries vs max qps for recursive servers running Unix

Fig. 11. Successful queries vs max qps for recursive servers running Windows

Once again, for this metric the performance of the servers 
at moderate loads is indistinguishable.  On Unix systems, 
BIND does the best at higher loads, with IRONSIDES and 
DNSMASQ on the low end flattening out after 2500 qps.  On 
Windows systems, IRONSIDES can keep pace with BIND for 
longer than WINDNS, dropping off at around 2500 qps.  At 
high loads, IRONSIDES is significantly below BIND, but still 
above WINDNS.

4) Latency vs Max Queries Per Second: Figs. 12 and 13
show the average latency as a function of max qps for Unix 
and Windows systems, respectively.  For this metric, smaller 
is better.

Fig. 12. Latency in microseconds for recursive servers running Unix

Fig. 13. Latency in microseconds for recursive servers running Windows

The latency for recursive servers was, as expected, 
significantly longer than that for authoritative servers, since 
initial access to an upstream server is required.  For Unix 
systems, DJBDNS is incredibly fast:  At 13 microseconds it’s 
over an order of magnitude faster than its closest competitor 
IRONSIDES,

For Windows systems, as expected WINDNS performs the 
best.  Clearly minimal DNS latency is important to Microsoft.
The behavior of MARADNS is unusual in that latency peaks 
at relatively low qps values and then steadily improves to a
stable value under higher loads.  We were not able to 
determine the reason for this behavior.  IRONSIDES has the 
highest latency, gradually increasing with workload.  We 
presume this is due to its designed behavior of attempting to 
handle every query it can, at the cost of increased response 
time for individual queries.

V. CONCLUSIONS 

As an authoritative server for Unix, IRONSIDES exhibited 
the best performance of all the servers we tested.  For 
Windows, WINDNS performed better but only slightly, despite 
its status as a native Windows application developed by a 
multibillion dollar company.  
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As a recursive server, IRONSIDES can accept roughly as 
many queries as any other server we tested up to 1500-2000 
qps, depending on the operating system.  Beyond that, BIND 
performs the best, accepting approximately three times more 
queries at maximum loads tested.  This is consistent with its 
design philosophy of responding to queries with SERVFAIL if 
it perceives the load is too high.

For Unix and Windows systems, the fraction of dropped 
queries is essentially indistinguishable between the top four 
servers, of which IRONSIDES is one.  In terms of successfully 
processing queries under increasing loads, the performance of 
all servers including IRONSIDES was indistinguishable up to 
about 1500 qps.  Under maximum loading, BIND performed 
the best and is significantly better than IRONSIDES, although 
IRONSIDES performed better than WINDNS under Windows.

In terms of latency, on Unix systems DJBDNS performed 
the best, over an order of magnitude faster than its closest 
competitor IRONSIDES.  On Windows systems WINDNS is 
the fastest under all loading conditions.  IRONSIDES is second 
up to about 1500 qps, but then degrades linearly up to the 
maximum tested value of 4000 qps.

Of all the servers tested, IRONSIDES is the only one with 
provable security properties.  The closest competitor would be 
DJBDNS, with its offer of a $1000 payout for verified security 
problems.  This bounty was eventually paid out in 2009 [18].   
Clearly payout claims are no substitute for formal proofs of 
security.

We found no evidence that the use of formal methods in 
IRONSIDES required giving up performance. The 
performance of IRONSIDES was in most cases comparable 
and in some cases superior, depending on the loads tested.
This is particularly significant given the relative resources 
expended in the development of IRONSIDES.

VI. FUTURE WORK

IRONSIDES does not yet offer the entire functionality of 
more widely used servers, and while its source is publicly 
available [19] it does not have support infrastructure.  These 
are logical ways to add further value to IRONSIDES.

We hope this work will be further extended to apply formal 
methods and performance analysis outside the DNS domain, in 
the hopes of continued confirmation that internet software can 
be made provably more secure without significant sacrifices in 
performance.  Web servers, for example, suffer from similar 
security problems for similar reasons.   ICS and SCADA 
systems are currently attractive targets for hacking, and formal 
methods have been used to improve their security [20], but the 
effect of formal methods on performance in this domain 

remains unknown.  These are the subject of current work at the 
Academy Center for Cyberspace Research.
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