
Making DNS Servers Resistant to Cyber Attacks: An
Empirical Study on Formal Methods and Performance

Barry S. Fagin, Bradley Klanderman
Director, Academy Center for Cyberspace Research

Department of Computer Science
US Air Force Academy

Colorado Springs, CO 80840 USA
barry.fagin@usafa.edu

Martin C. Carlisle
Information Networking Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

martin.c.carlisle@gmail.com

IRONSIDES is an open-source Domain Name System (DNS)
server designed using formal methods to reduce DNS
vulnerabilities to cyber attacks. The use of formal methods gives
IRONSIDES provable security properties, including the absence
of numerous security flaws that plague BIND and Windows DNS.
It also raises an empirical question: Does the use of formal
methods to generate provably secure code require sacrificing
performance?

We present the results of an experimental investigation to
answer this question. We compared IRONSIDES to BIND,
Windows DNS, and numerous other DNS servers on both
Windows and Unix. Our results show IRONSIDES performs
quite well compared to other DNS servers, both proprietary and
open-source, particularly given the resources expended in its
development. This suggests that, at least in the DNS domain,
increasing security with formal methods to render them less
vulnerable to cyber attacks does not require sacrificing
performance.

Keywords—Ada, DNS, open source, cyber attack resistance,
formal methods, internet software, performance analysis, SPARK.

I. INTRODUCTION

The Domain Name System (DNS) is the internet protocol
that transforms hostnames (e.g. cnn.com) into IP addresses
(e.g. 151.101.0.73). Originally proposed by Mockapetris in
[1], it is a distributed database protocol that uses the internet as
a tree structure to manage records containing information about
machine names and properties.

Software that implements this protocol is referred to as a
DNS server. This term can also describe the machine a
software DNS server runs on. Servers that are responsible for
resolving names in a single zone (typically a company,
university, or similarly scoped institution) are called
authoritative servers. If queried about names outside the zone
for which they are responsible, authoritative servers reply with
a failure message, the equivalent of “I don’t know”.

Servers capable of resolving names for any publicly visible
machine on the internet are called recursive. They use a
recursive process to travel up the distributed internet tree
structure to determine the name of the machine in question. In
modern DNS practice, most recursive solvers do not use full
recursion to traverse the name tree. Instead, they refer queries
to a publicly available fully recursive DNS server (for example,
Google’s public DNS at 8.8.8.8), and then cache the result for
future use.

DNS is a vital internet protocol. Unfortunately, because it
dates from the early days of networking, it contains security
flaws that require mitigation to prevent malicious actors from
exploiting the system [2]. Additionally, most DNS software is
written in older languages with inherent security problems.
These languages do not lend themselves to rigorous software
design and provable security properties. The two most popular
DNS servers, BIND and WINDNS, have a large number of
known security flaws that render them vulnerable to cyber
attacks, including crashing in response to the injection of bad
data and bugs that permit remote execution [3], [4]. These are
described in more detail in the sections that follow.

II. PREVIOUS WORK

In an attempt to address the problem of security flaws in
widely deployed internet software, we developed IRONSIDES,
a DNS server written in Ada/SPARK [5]. IRONSIDES has
numerous provable security properties, including an absence of
remote execution vulnerabilities and invulnerability to
termination as a result of unexpected or incorrectly formatted
input. It runs under both Windows and Linux. More details
about IRONSIDES are available in [6] and [7].

Our previous work with IRONSIDES showed that a more
secure DNS server can be implemented using formal methods
with relatively low development costs (the work was
performed by two faculty members at a teaching university
working on a part-time research grant). As expected, we were
not able to offer the full functionality of an internet consortium
(BIND) or a multibillion dollar software company (WINDNS),
but we were able to deliver a working authoritative DNS server
with provably better security than either [6],[7]. This
suggested that formal methods can and should be used to
improve the security of both open- and closed-source internet
software.

The successful development of IRONSIDES raised two
follow-on questions: 1) Can these successes be duplicated in a
recursive server, and 2) How does the use of formal methods
impact performance? This paper reports our experimental
investigation of these questions.

III. TESTING ENVIRONMENT

Benchmarking recursive DNS servers is a known hard
problem. Network traffic, topology, cache management,
security configurations, operating system choice and system

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.165

566

administration policies all affect performance. The complex
nature of the name resolution task makes it difficult to control
for individual variables, to test systems fairly, and to generate
repeatable results. There are also a number of benchmarking
tools to choose from (for example [8] and [9]), each of which
could affect the results produced.

We have attempted to mitigate these effects by testing all
servers on a closed network of virtual machines. One VM
generates DNS queries, another simulates a connection to the
internet, and the rest each run a separate server/OS
combination (either Windows or Ubuntu Linux). We describe
this in detail below.

A. Hardware and Software Tools
The underlying hardware for our experiment is an NCS

Technologies server with a Xenon E5 CPU, 256G of RAM
and a 3.7TB RAID hard drive, running XenCenter 7 for
instantiating virtual machines. Each VM has 2G of RAM and
16G of disk space. The server can in turn be accessed from
workstations in the laboratories of the Academy Center for
Cyberspace Research.

All this is abstracted from the experimenter during testing.
From the experimenter’s point of view, the test bed is best
viewed as a collection of virtual machines running various
tools, as shown in Fig. 1:

Fig. 1. Experimental test environment

The virtual machine labeled *PERF runs the benchmarking
tools. We chose Nominum’s DNSPerf and ResPerf [10] due
to their open source nature and free availability to the general
public. (DNSPerf is used for authoritative servers, ResPerf for
recursive servers). We were confident we could quickly get
these tools up and running in our environment, and wanted to
be able to inspect the source code in the event of problems or
the desire to customize them to meet our needs. For the results
shown here, customization was not necessary, the tools were
built unaltered.

INETSIM is an open-source software suite designed to
simulate common internet services in a lab environment [11].
It is used when the behavior of a piece of software is of interest
but a direct connection to the internet is either unnecessary or
undesirable. This could include malware testing, for example,
or in our case testing DNS servers. Using INETSIM enabled
us to eliminate external network traffic and name resolution
issues from our experiment, focusing exclusively on name
server performance. One of the VM’s in the test environment
is dedicated to running INETSIM. This machine must be up
and running when recursive servers are under test.

The VM labeled ROUTER is simply the connection to the
external internet, used for downloading software. It does not

need to be up during testing if no external resources are
required.

B. DNS servers tested
We tested a total of eight DNS servers, briefly summarized

below:

1) BIND: Open-source and the industry standard, BIND
offers a full complement of DNS functions. Although hard
numbers are difficult to come by, in 2010 one online computer
security blog estimated that 85% of DNS servers run BIND
code [12]. As of three years ago, BIND’s site claimed a
market share of “over 80%” [13].

Unfortunately, BIND is rife with security problems. As of
this writing, there are 78 known security vulnerabilities
affecting the current BIND distribution [3]. The provable
absence of most of these problems in IRONSIDES is described
in [6] and [7].

2) DJBDNS: An open-source DNS server developed by
Daniel J. Bernstein. Designed specificially with security in
mind, Dr Bernstein offers $1000 to the first person to publicly
report a verifiable security hole in his code [14].

3) DNSMASQ: The default DNS infrastructure for open-
source Unix systems.

4) IRONSIDES: Implemented in Ada/SPARK with
formally provable security properties. Described previously.

5) KNOT_DNS: An open-source, authoritative-only DNS
server, developed by the Czech Network Internet Consortium
[15].

6) MARADNS: A small, open-source DNS server
developed by Sam Trenholme, designed to be lightweight,
easy to set up, and very secure [16].

7) POWERDNS: An open-source DNS server provided by
a commercial company [17].

8) WINDNS: Microsoft’s DNS server that comes bundled
with Windows. A longstanding industry standard like BIND,
it is also known to have numerous security vulnerabilities [4]
provably absent from IRONSIDES.

Of all the servers listed above, only IRONSIDES has
formally proven security properties.

C. Experimental Protocol
Testing authoritative servers is fairly simple. All servers

are configured with a zone file containing various DNS record
entries for machines in the mock zone “dfcs.usafa.edu”.
DNSPerf is then activated on the benchmarking VM, and run
under various shell scripts to send queries at varying rates to
the server under test. The query is issued to the target server,
the server responds, and the information is logged. At the end
of the run, data is dumped for performance analysis and
processed with further shell scripts. This is shown in Fig. 2.

567

Fig. 2. Authoritative server testing

Testing recursive servers is more complicated. Resperf is
activated on the benchmarking machine and pointed to the
target. First, it sends a query to the machine running the server
under test. The server then forwards the query to the machine
running INETSIM (which includes a DNS server simulator).
This simulates the forwarding of a query to a publicly available
DNS server, something many DNS servers now do.

INETSIM returns a mock address (the same one for all
queries) to the resolver under test. That information is cached,
and then forwarded to the machine running Resperf. Further
queries for that same host name will be handled exclusively by
the target as long as the entry remains in the cache. This
process is shown in Fig. 3:

Fig. 3. Recursive server testing

IV. EXPERIMENTAL RESULTS

DNS server performance analysis is hard because there are
many different metrics by which DNS performance can be
measured. This is further complicated by individual server
query management policies. For example, some servers can
choose to simply ignore queries when they become too busy,
while others may attempt to handle all queries they receive to
the maximum extent possible given the limits of their internal
data structures.

To maximize the repeatability of these results and fairness
of cross-server comparisons, we explicitly define our
performance metrics as follows:

Maximum queries per second (qps): For authoritative
servers, this is the maximum number of queries that DNSperf
reports that the server under test was able to sustain. For
recursive servers, this is the command line argument to
Resperf, and appears as an x-axis label in the figures below. It
is the maximum number of queries per second that Resperf
attempts to send to a server during a particular test run.

Latency: The time between a query initiation and response
as reported by DNSperf or Resperf.

Queries sent: The total number of queries the tool was able
to send to the server during a test run.

% Queries lost: The percentage of queries that were either
unanswered or were answered with SERVFAIL. We count
failures as lost queries because there is no reason in our test
environment to fail other than the inability of the server to
handle the load.

Successful queries per second: The total number of queries
sent minus the number of lost queries, divided by the length of
the test run.

A. Authoritative server performance
Because DNSperf is intended solely for authoritative

servers, it only reports the maximum number of queries per
second it was able to achieve.

Figs. 4 and 5 show the maximum qps values we obtained
for authoritative servers under Unix and Windows respectively.

Fig. 4. Max queries per second for authoritative servers running Unix

568

Fig. 5. Max queries per second for recursive servers running Unix

For Unix, IRONSIDES exhibits significantly higher max
qps than any others we tested, more than twice that of BIND,
its next closest competitor. For Windows, WINDNS performs
better, but only slightly (7%).

We would expect WINDNS to perform better under
Windows due to its developers’ access to the OS kernel and its
associated tight integration with the host system. That said,
we believe the relatively small difference in performance
compared to IRONSIDES is significant, particularly when
comparing the resources of a multibillion dollar software
company to an academic research laboratory at an
undergraduate institition.

B. Recursive server performance
Recursive servers were tested with Resperf with

successively increasing values of maximum qps on the
command line. As these values increase, server load becomes
heavier, more queries are dropped, and latency declines or
flattens out. The maximum qps for a given run appears as an
x-axis label, with the metric reported on the y-axis.

1) Queries Sent: Fig. 6 shows the total number of queries
sent as a function of max qps for our tested DNS servers on
Unix systems:

Fig. 6. Total queries sent vs max qps for recursive servers running Unix

Up to 1500 qps, the performance of the servers is
essentially indistinguishable. At higher values, DNSMASQ,

IRONSIDES and DJBDNS drop off fairly quickly. BIND was
able to accept the most queries.

Similar results are seen in Fig. 7 for Windows systems, in
that for smaller qps values the results are indistinguishable.
Similar to the UNIX results, IRONSIDES drops off for higher
qps, but interestingly so does WINDNS. BIND once again
accepted the most queries, a total of about 302,000 over an 80-
second run at 4000 qps.

Fig. 7. Total queries sent vs max qps for recursive servers running Windows

2) Queries Lost: Figs. 8 and 9 below show the percentage
of queries lost as a function of max qps for Unix and
Windows systems. For this metric, lower is better. Values are
rounded to one decimal place, so points that appear to be zero
are actually small but non-zero values.

Fig. 8. % queries lost vs max qps for recursive servers running Unix

Fig. 9. % queries lost vs max qps for recursive servers running Windows

569

For Unix systems, the best performers in this area were
DJBDNS, DNSMASQ, and IRONSIDES, all losing a
miniscule percentage of queries at the highest loads tested.
BIND did the worst at this metric, reflecting its policy of
reporting SERVFAIL at its discretion to optimize its internal
performance.

For Windows systems, the performance of WINDNS
and IRONSIDES on this metric are indistinguishable, both
dropping a very tiny percentage of queries at the highest loads
tested. MARADNS dropped the most at about 60%, with
BIND at 18%.

3) Successful Queries vs Max Queries Per Second: Figs.
10 and 11 show the number of successful queries versus max
qps for Unix and Windows systems.

Fig. 10. Successful queries vs max qps for recursive servers running Unix

Fig. 11. Successful queries vs max qps for recursive servers running Windows

Once again, for this metric the performance of the servers
at moderate loads is indistinguishable. On Unix systems,
BIND does the best at higher loads, with IRONSIDES and
DNSMASQ on the low end flattening out after 2500 qps. On
Windows systems, IRONSIDES can keep pace with BIND for
longer than WINDNS, dropping off at around 2500 qps. At
high loads, IRONSIDES is significantly below BIND, but still
above WINDNS.

4) Latency vs Max Queries Per Second: Figs. 12 and 13
show the average latency as a function of max qps for Unix
and Windows systems, respectively. For this metric, smaller
is better.

Fig. 12. Latency in microseconds for recursive servers running Unix

Fig. 13. Latency in microseconds for recursive servers running Windows

The latency for recursive servers was, as expected,
significantly longer than that for authoritative servers, since
initial access to an upstream server is required. For Unix
systems, DJBDNS is incredibly fast: At 13 microseconds it’s
over an order of magnitude faster than its closest competitor
IRONSIDES,

For Windows systems, as expected WINDNS performs the
best. Clearly minimal DNS latency is important to Microsoft.
The behavior of MARADNS is unusual in that latency peaks
at relatively low qps values and then steadily improves to a
stable value under higher loads. We were not able to
determine the reason for this behavior. IRONSIDES has the
highest latency, gradually increasing with workload. We
presume this is due to its designed behavior of attempting to
handle every query it can, at the cost of increased response
time for individual queries.

V. CONCLUSIONS

As an authoritative server for Unix, IRONSIDES exhibited
the best performance of all the servers we tested. For
Windows, WINDNS performed better but only slightly, despite
its status as a native Windows application developed by a
multibillion dollar company.

570

As a recursive server, IRONSIDES can accept roughly as
many queries as any other server we tested up to 1500-2000
qps, depending on the operating system. Beyond that, BIND
performs the best, accepting approximately three times more
queries at maximum loads tested. This is consistent with its
design philosophy of responding to queries with SERVFAIL if
it perceives the load is too high.

For Unix and Windows systems, the fraction of dropped
queries is essentially indistinguishable between the top four
servers, of which IRONSIDES is one. In terms of successfully
processing queries under increasing loads, the performance of
all servers including IRONSIDES was indistinguishable up to
about 1500 qps. Under maximum loading, BIND performed
the best and is significantly better than IRONSIDES, although
IRONSIDES performed better than WINDNS under Windows.

In terms of latency, on Unix systems DJBDNS performed
the best, over an order of magnitude faster than its closest
competitor IRONSIDES. On Windows systems WINDNS is
the fastest under all loading conditions. IRONSIDES is second
up to about 1500 qps, but then degrades linearly up to the
maximum tested value of 4000 qps.

Of all the servers tested, IRONSIDES is the only one with
provable security properties. The closest competitor would be
DJBDNS, with its offer of a $1000 payout for verified security
problems. This bounty was eventually paid out in 2009 [18].
Clearly payout claims are no substitute for formal proofs of
security.

We found no evidence that the use of formal methods in
IRONSIDES required giving up performance. The
performance of IRONSIDES was in most cases comparable
and in some cases superior, depending on the loads tested.
This is particularly significant given the relative resources
expended in the development of IRONSIDES.

VI. FUTURE WORK

IRONSIDES does not yet offer the entire functionality of
more widely used servers, and while its source is publicly
available [19] it does not have support infrastructure. These
are logical ways to add further value to IRONSIDES.

We hope this work will be further extended to apply formal
methods and performance analysis outside the DNS domain, in
the hopes of continued confirmation that internet software can
be made provably more secure without significant sacrifices in
performance. Web servers, for example, suffer from similar
security problems for similar reasons. ICS and SCADA
systems are currently attractive targets for hacking, and formal
methods have been used to improve their security [20], but the
effect of formal methods on performance in this domain

remains unknown. These are the subject of current work at the
Academy Center for Cyberspace Research.

ACKNOWLEDGMENT

This work was supported by the US Defense Advanced
Research Projects agency and the Air Force Office of Scientific
Research, under the auspices of the Academy Center for
Cyberspace Research. The contributions of ACCR lab director
Sean Harris are gratefully acknowledged. Finally, we thank
the anonymous referees for their suggestions and feedback.

REFERENCES

[1] https://tools.ietf.org/html/rfc882.
[2] Carnegie Mellon University Software Engineering Institute, “Multiple

DNS implementations vulnerable to cache poisoning”,
http://www.kb.cert.org/vuls/id/800113.

[3] Internet Security Consortium, BIND 9 Security Vulnerability Matrix,
available online at https://kb.isc.org/article/AA-00913/0/BIND-9-
Security-Vulnerability-Matrix.html

[4] https://technet.microsoft.com/library/security/MS15-127
[5] Barnes, J.: High Integrity Software: The SPARK Approach to Safety

and Security. Addison-Wesley Publishing, 0-321-13616-0, © 2003.
[6] B. Fagin and M. Carlisle, “Provably secure DNS: A case study in

reliable software,” 2013 International Conference on Reliable Software
Technologies, Berlin, Germany pp 81-93.

[7] M. Carlisle and B. Fagin, “IRONSIDES: DNS with no single-packet
denial of service or remote code execution vulnerabilities”,
GLOBECOMM 2012, Anaheim CA.

[8] S. Gibson, Domain Name Server Benchmark, available online at
https://www.grc.com/dns/benchmark.htm

[9] NameBench, https://namebench.en.softonic.com/.
[10] http://www.nominum.com/measurement-tools/
[11] Internet Services Simulation Suite, http://www.inetsim.org/.
[12] R. Mohan, “In defense of BIND: Open source DNS software yields a

better breed of secure produt”, Security Week, May 25th 2010, available
online at http://www.securityweek.com/defense-bind-open-source-dns-
software-yields-better-breed-secure-product.

[13] https://www.isc.org/blogs/whats-your-version/
[14] https://cr.yp.to/djbdns/guarantee.html.
[15] Knot DNS: A high-performance authoritative-only DNS server,

https://www.knot-dns.cz/
[16] S. Trenholme, “MaraDNS: A small open-source DNS server”, available

online at http://maradns.samiam.org/
[17] https://www.powerdns.com/
[18] http://www.zdnet.com/article/dan-bernstein-confirms-djbdns-security-

hole-pays-1000/
[19] http://ironsides.martincarlisle.com
[20] J. Groote, A. Osaiweran and J. Wsesselius, “Analyzing the effects of

formal methods on the development of industrial control software”,
2011 IEEE Conference on Software Maintenance, Williamsburg VA, pp
467-472.

[21] H. Boulakhrif, “Analysis of DNS Resolver Performance
Measurements”, Masters’ Thesis, Uuniversity of Amsterdam, 2015,
available online at https://www.nlnetlabs.nl/downloads/publications/os3-
2015-rp2-hamza-boulakhrif.pdf.

571

