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Abstract-This paper presents performance results for a parallel exe- 
cution model for Prolog that supports AND-parallelism, oa-parallelism, 
and intelligent backtracking. The results show that restricted ANo-paral- 
lelism is of limited benefit for small programs, but produced speedups 
from 7 to 10 on two large programs. on-parallelism was generally not 
found to be useful for the benchmarks examined if the semantics of 
Prolog were preserved. 

Of particular interest is the phenomenon of supermultiplicative behav- 
ior, in which the performance improvement obtained when more than 
one technique is employed is greater than the product of the perfor- 
mance improvements due to each technique individually. The implica- 
tions of the performance results for parallel Prolog systems are dis- 
cussed, and directions for future work are indicated. 

Index Terms-AND-parallelism, intelligent backtracking, logic pro- 
gramming, OR-parallelism, parallel symbolic computing, Prolog, super- 
multiplicative phenomena. 

I. INTRODUCTION 

T HIS work presents some performance results of a new 
execution model for parallel Prolog: the Parallel Prolog 

Processor model, or PPP. The execution model and its underly- 
ing architecture were developed as part of the Aquarius Project 
at the University of California at Berkeley. The Aquarious 
Project is a research investigation into the underlying issues of 
high performance symbolic computation, and in particular high 
performance execution of Prolog. 

This paper attempts to shed new light on the behavior of 
parallel logic programs. Many execution models for parallel 
logic programming have been described in the literature. These 
include Conery’s AND/OR process model [9], a general oa-paral- 
lel execution model [2], Li and Martin’s Sync model [24], 
various dataflow models [ 11, [20], the Japanese Parallel Infer- 
ence Engine [26], and the restricted AND-parallel execution 
model of Hermenegildo [22]. These models are theoretically 
powerful, but little is known about how these models would 
behave on actual programming tasks. Simulation results are 
extremely rare, and those studies that do exist are based on 
extremely small, “toy” programs [lo], [22]. As a result, we 
know very little about the utility of parallel logic programming 
on realistic programs. This paper presents a detailed simulation 
study of a parallel Prolog execution model on a variety of 
benchmark programs, including a theorem prover and a Prolog 
compiler. 

Our results indicate that for small programs restricted AND- 
parallelism is not effective in improving performance; even with 
32 processors these programs ran no more than twice as fast. 
Better results are obtained with larger programs like the 
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Boyer-Moore theorem prover and the Berkeley PLM complier; 
these programs ran 7 and 10 times faster, respectively. The 
experiments also show that oa-parallelism is not particu- 
larly effective for single-solution benchmarks. While the 
“mu-math” and “queens” benchmarks showed speedup factors 
of 4 and 5, the remaining single-solution programs showed less 
than two. Finally, we discovered that Prolog programs could 
exhibit supermultiplicative behavior. In particular, the speedup 
obtained in the “ckt4” benchmark by combining aNo-paralle- 
lism, OR-parallelism, and intelligent backtracking was 77 % 
greater than the product of the speedups of each technique taken 
individually. 

The preliminary results of this research were first presented at 
the 14th International Symposium on Computer Architecture 
[19]. Since then, the simplified timing assumptions underlying 
our simulation results have been replaced with more realistic 
ones. We have also enlarged the benchmark set to include the 
Boyer-Moore theorem prover and the VanRoy Prolog compiler. 
Further work has also shown that preserving the semantics 
of sequential Prolog can have strongly negative performance 
consequences; this is discussed briefly here. Finally, this paper 
includes an analysis of supermultiplicative speedup in Prolog 
programs not provided in [ 191. 

This paper is divided into five sections. Section II briefly 
explains the type of concurrency inherent in Prolog. Section III 
presents the simulated results of the PPP execution model and 
architecture on an extensive set of Prolog benchmarks, while 
Section IV presents our conclusions. Section V suggests possibil- 
ities for future work. 

II. PARALLELISMIN PROLOG 

Throughout this section, the reader is assumed to be familiar 
with Prolog. Readers unfamiliar with the language are referred 
to [8] and [27] as excellent introductory texts. 

There are four basic types of parallelism inherent in Prolog: 
AND-parallelism, os-parallelism, stream parallelism, and unifi- 
cation parallelism. 

A. AND-Pardkhm 

When Prolog unifies a goal literal with the head of a com- 
pound clause C, the literals in the body of C are then unified 
sequentially. It is also possible, however, to resolve these literals 
in parallel if sufficient computing resources are available. This 
type of parallel execution is called AND-pmd/ekSRZ: it is the 
parallel traversal of AND subtrees in the execution tree. An 
example of AND-parallelism is shown in Fig. 1. 

The principal difficulty with AND-parallelism is the problem of 
binding conflicts. If AND-SUbtK32S of the execution tree are 
executed in parallel, the resulting unification substitutions may 
conflict. For example, consider the program 

f(x) :-a(x), b(X). 

41) 

b(2). 
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The literals a(X) and b(X) can theoretically be resolved in 
parallel. However, if both resolution steps are attempted concur- 
rently, one will attempt to apply the unifying substitution X = 1, 
while the other will attempt X = 2. 

AND-parallelism in which goals are allowed to execute in 
parallel even though they may bind shared variables is com- 
monly referred to as unrestricted AND-parallelism. It requires 
some sort of synchronization for shared variables as well as a 
method of filtering sets of variable bindings returned from 
nondeterministic literals. (In the previous example, the set of 
substitutions (X = 1, X = 2) and (X = 2, X = 3) must be 
intersected to produce X = 2.) Because such schemes introduce 
considerable run-time overhead, most schemes for AND-parallel- 

ism incorporate program annotation to denote which goals 
produce and consume variable values [9], [ 121. This information 
is then used to ensure that goals execute in AND-parallel fashion 
only if the resulting substitutions are conflict-free. This type of 
AND-parallelism is called restricted AND-parallelism [ 111. The 
PPP execution model employs this type of AND-parallelism; 
variable binding conflicts are avoided through the use of com- 
pile-time analysis. The interested reader is referred to [4]. 

In sequential Prolog, when a goal g with principal functor f 
is resolved by a Prolog program, unification is attempted with 
each clause in the procedure P for f. The clauses in P are 
examined from top to bottom. If unification with the head of a 
clause is successful, execution continues with the goals in the 
body, if any. If unification fails, the state of the machine is 
restored and the next clause in P is attempted. 

However, given sufficient computing resources, it is also 
possible to perform the unification of g with all clauses in P 
and then execute the remaining subdirections associated with 
successful unifications in parallel. This type of concurrent execu- 
tion is called OR-parallekn: it is the parallel traversal of OR 

subtrees in the execution tree of the program. 

1. 

For example, in the following program 

main :- a( X),p( X). 

a(1) :-b,c,d. 
42) :- e,f, g. 
a(3) :- h,i. 

(other clauses for 6, c, etc.) 

main? 

Example 1 .O 
the simultaneous unification of “a(X)” with “a(l),” “a(2),” 
and “a(3),” and the concurrent attempts to resolve their associ- 
ated subgoals would be an example of on-parallelism. This is 
shown below in Fig. 2. 

OR-parallelism has been studied by numerous researchers [5], 
[2], [25], [lo]. The chief difficulty with OR-parallelism is the 
problem of multiple binding environments. Consider the pre- 
vious program. Each of the three children of a(X) must see the 
variable X as unbound, and must be able to bind it to its own 
particular value, independent of the actions of the other children. 
Thus, even though the first child may have bound X to 1, the 
second child must not “see” that binding, instead being able to 
bind X to 2. Furthermore, there must be a way to transmit these 
bindings of X to the goal p(X). 

Most research in oa-parallelism execution of logic languages 
deals with ways to solve this problem. The PPP employs a 
technique called “hash windowing,” first suggested by Borg- 
wardt [2]. Early indications are that hash windowing outper- 
forms other techniques [lo], [6]. A detailed description of hash 
windowing in the PPP and the reasons for choosing it over other 
schemes is provided in [ 191. 

C. Stream Parallelism 
Stream parallelism has also been studied as a vehicle for 

concurrent computation [21], [13]. Stream parallelism in Prolog 
occurs when literals pass a “stream” of variable bindings to 



1436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39. NO. 12, DECEMBER 1990 

Fig 

other literals, each of which is operated on concurrently. Literals 
that produce the bindings are called “producers”; literals that 
operate on the bindings generated by producers are called “con- 
sumers . ’ ’ 

For example, consider the following program 

main:-int(N), test(N), print(N). 

int(0). 
int(N):-int(M), N is M+ 1. 

in which test(N) is any procedure that makes use of N. If, 
when int(N) succeeds, a new process is created that tests and 
prints N at the same time as further solutions for int(N) are 
generated, then such concurrent execution would be stream 
parallelism. 

While at first glance stream parallelism may appear to be a 
new type of concurrency, in fact its effects can be duplicated 
using OR-parallelism. This is discussed in detail in [19]. 

D. Unification Parallelism 
The last type of parallelism is unification parallelism. Unifica- 

tion parallelism is of a finer grain than the other types men- 
tioned, occurring when the unification of multiple arguments in 
the head of a clause proceeds concurrently. For example, in the 
program 

main:-a(X,Y), ... 

the unification of X with f( b,c) and Y with g(d) could occur 
concurrently, using unification parallelism.’ 

‘This contrasts with the definition of unification parallelism of Hwang et 
al. in [23], which defines unification parallelism as “the parallel matching of 
clauses in the Prolog database with the goal clause and the partial instantia- 
tion of variables to constant values.” Hwang’s definition is a subcase of 
oa-parallelism as we have defined it; other sources refer to it as “shallow” 
oa-parallelism [28]. Since our definition is corroborated by other sources 
(for example, 1261) we will continue to use unification parallelism as we 
have defined it. 

2. 

While it is known that in the worst case unification is very 
unlikely to be sped up by parallel computation [ 161, most of the 
unification encountered in typical Prolog programs can be [7]. 
The addition of special hardware and the use of instruction 
scheduling to exploit unification parallelism is currently an ac- 
tive area of research. However, we note that unification paral- 
lelism occurs at the instruction set level, and not at the level of 
computing processes. Unification parallelism is of a much finer 
grain than AND or OR parallelism. Since this paper is concerned 
with the coarse-grained parallelism of Prolog, we will not 
discuss unification parallelism further. 

III. RESULTS 

In this section, we present and discuss the performance of a 
parallel Prolog execution model, the PPP, on several benchmark 
programs. The PPP is an execution model for Parallel Prolog 
supporting restricted AND-parallelism and err-parallelism. It is 
implemented through compilation to an abstract Prolog instruc- 
tion set, a superset of the Berkeley PLM instruction set [17], 
[ 151. A detailed description of the PPP execution model and 
instruction set is available in [ 181. 

The results presented here represent the most comprehensive 
study of parallel Prolog known to the authors. We begin the 
section with a brief discussion of the modeled system and how 
the results were obtained. We then present the results of a 
32-processor system on a large benchmark set, and discuss them 
in detail. 

A. The Simulator 
The results presented in this section were obtained with a 

multiprocessor simulator, written in C, and running under 4.3 
BSD UNIX. The simulator is based on the level 1 PLM simula- 
tor developed by Tep Dobry 1141, suitably modified to support 
the multiprocessing operations and new instructions of the PPP. 

The simulator models an arbitrary number of processors 
connected to a single cycle memory system, as shown in Fig. 3. 

Each processor is an extended version of the Berkeley PLM 
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Fig. 3. The system under study. 

TABLE I 
THE BENCHMARKS 

divide 10 13 symbolic differentiation 
log10 13 ” 
OPS8 13 ” 
times10 13 ” 
diff 19 ” 
palin 24 index a list 
qsd 20 quickson 50 items 
W V  37 database quay 
COlIl 4 deterministic concat 
con6 6 nondetetmintstic concat 
mumath 28 simple. theorem prover 
qu- 41 solve Cqueens problem 
boresea 53 test.9 procedure calls 
consUuct_list 28 tests list construction 
COnstnlCI~S~ 28 tests sbuctme construction 
deep-bak 25 mts deep backtracking 
envir 19 tests environment allocation 
ma@ 2s stmple map  coloring problem 
match-list 31 tests list unification 
match-sn 38 tests stmctue unitication 
match-nested-su 24 test.9 nested structure unification 
knight 27 kniight’s tour, 4 X 4 board 
compiler 1597 prolog compiler 
boyer 337 Boye~Moore Theorem Rover 
ckt4 35 de.si~ sun~le circuit _-------------------____ -___ ____ 

- - 

Prolog processor [15]. The number of processors can be speci- 
fied at run time, defaulting to 32. 

Simulation is interleaved at the level of PPP instructions. That 
is, during a simulation run, processor 0 will be simulated for one 
PPP instruction, then processor 1, and so on. Processors that are 
not currently executing PPP code scan a process table for 
available work. 

B. How the Speedup of the PPP is Reported 
The speedup for a program P for N processors is obtained 

by dividing the execution time of P compiled for sequential 
execution by the execution time of P compiled for parallel 
execution on an N-processor system. Since a uniprocessor 
executing a program P compiled for parallel execution may run 
much slower than a uniprocessor executing P compiled for 
sequential execution, owing to the costs of concurrent process- 
ing, negative speedups will be exhibited when the costs of 
multiprocessing outweigh the benefits. 

C. The Benchmarks 
A total of 24 benchmarks were examined. All benchmarks 

were examined for opportunities to exploit AND-parallelism, 
OR-parallelism, and intelligent backtracking. The benchmarks 
used are shown below in Table I, along with their size and a 
brief description. 

TABLE II 
BENCHMARK SIZE (W-INSTRUCTIONS) 

divide10 198 214 x x 
log10 192 x x x 
ops8 190 206 x x 
t imes10 198 214 x x 
diff 360 364 x x 
palin 190 193 190 193 
qd 122 126 119 123 
4”T 389 392 389 392 
COnl 31  x x 
con6 28 x i8 x 
mumath 136 

;16 
139 x 

queens 214 203 227 
boresea 216 220 x x 
constluct~list 418 422 x x 
ConsmtCt~SU 518 SO8 x x 
deep-b.& 85 89 8.5 89 
envir 166 170 x x 
ma@ 144 144 x 
match-list 528 332 x x 
match-w 126 730 x x 
match-nested-str 593 597 x 
knight 387 x ;93 x 
compiler 10214 10222 x x 
boyer 2603 2607 x x 

prog seq A 0 I A0 AI 01 
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One of our criticisms of previous work in parallel Prolog 
research was the small number of programs under study and 
their relatively trivial nature. In spite of this, our attempt to 
improve the situation has only been partially successful. While 
this work represents the largest study of parallel Prolog pro- 
grams known to the authors, and while most of these bench- 
marks are larger than others previously studied, only a few of 
them can be regarded as “serious” programs. Nonetheless, we 
believe the results to be a significant first step. 

None of these benchmarks use “assert” or “retract,” Prolog 
predicates that modify the source program. The problems of side 
effects and self-modifying code in parallel execution are well 
known; a thorough treatment of them is beyond the scope of this 
paper. W e  suggest this topic as an area of future work. 

The number of W-code instructions per benchmark are shown 
in Table II. This table lists the number of W-code instructions in 
the sequential version of the benchmark, as well as versions 
complied for AND-parallelism, OR-parallelism, and intelligent 
backtracking. 

W e  note that only “ckt4” was able to take advantage of our 
semi-intelligent backtracking scheme, although opportunities for 
semi-intelligent backtracking may also exist in the compiler. 
This suggests that opportunities for semi-intelligent backtracking 
may be rare among Prolog programs. 

D. Compilation Decisions in the PPP 
Currently, programs are hand-compiled for simulation on the 

PPP simulator. Potential points for AND-parallel and OR-parallel 
execution are identified by the programmer, and then the sequen- 
tial W-code is modified appropriately. W e  believe that the 
automatic detection of parallel execution points by a Prolog 
compiler is feasible, and suggest further investigation into this 
area. A simple algorithm for parallel execution point detection is 
given in [18]. 
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TABLE III 
EXPECTEDSPEEDUPOFBF.NCHMARKS(~~ P~~~E~~~R~,N~OVERHEAD) 

/ divide IO 

1 dcrp-hak 
I cn\ lr 

1 match nested str - 
/knight 
, compilct 
I bovcr 

E. Upper Bounds: Performance Under Optimal 
Conditions 

To better understand the upper limits on the performance of 
the PPP, we first present the performance results of an “ideal” 
32-processor PPP system below.’ These results assume that all 
operations associated with multiprocessing take zero time: they 
represent upper bounds on the performance of the PPP. 

The letters “ A, I ” “0,” and “I” stand for AND-parallelism, 
OR-parallelism, and intelligent backtracking. The entries in a 
particular column represent the speedups obtained for bench- 
marks compiled using the techniques corresponding to the letters 
in the column. An “x” indicates that a benchmark could not 
exploit a particular technique. 

We see immediately that a wide range of speedups are ob- 
tained. In some cases, a great deal of speedup is possible, while 
in other cases little improvement can be achieved. Before pre- 
senting more realistic performance measurements, we examine 
the benchmarks that showed relatively poor potential improve- 
ments (< 2) even under optimal conditions, in an effort to 
understand the limits of performance of parallel Prolog pro- 
grams. 

I) Poorly Performing Benchmarks: Benchmarks which 
showed no speedup of greater than 2 are shown below in Table 
IV. 

2) Analysis: There are five factors limiting the performance 
of the programs in Table IV: 

1) no parallel execution of goals possible 
2) the position of solutions in execution tree 
3) an unbalanced execution tree 
4) no support for partial evaluation of shared data 
5) the semantics of sequential Prolog. 

‘The present version of the simulator supports a maximum of 32 pro- 
cesses, so additional processors would not be effective. 

[EEETRANSACTIONSON COMPUTERS.VOL.39,NO.12.DECEMBERl9~ 

TABLE IV 
BENCHMARKS WITH SPEF.DUP < 2 

lprog77 0 A0 
t- 
/ divide IO I25 x s 

I con I x x Y 
1 man0 x I.13 \( 
1 kni’ght x 1.X2 s -I 

TABLE V 
FACTORSLIMITINGBENCHMARKPERFORMANCE(~~PROCESSOR~) 

divide IO 3 
logI I 
0p8 3 
times10 3 
paIin25 3, 4 
qsd 3 
con I I 
con6 s 
map0 2. 5 
knight 2, 5 ~--~~__ 

The factor appropriate to each benchmark is shown in Table 
V. 

We note that only the factors four and five are properties of 
the PPP: the other factors are properties of the benchmarks 
themselves. 

a) Benchmarks with no inherent concurrency: We see in 
Table III that the log10 and con1 benchmarks utilized neither 
AND-parallelism nor OR-parallelism. An inspection of these 
benchmarks will show that at any point, only one goal exists that 
can be reduced. Thus, these benchmarks are inherently sequen- 
tial, and cannot be sped up using parallel goal reduction. 

b) Positioning of solutions in the execution tree: The map0 
and knight benchmarks are quite similar; they perform an OR- 
parallel search of a problem space for a solution satisfying 
certain constraints. With OR-parallelism, the further to the right 
a solution is in the execution tree, the greater the benefits to be 
gained from OR-parallel computation. Solutions near the left 
correspond to those that would be found more quickly by the 
left-to-right traversal of sequential Prolog, and represent less of 
a performance win. 

With the map0 and knight benchmarks, the desired solution 
lies very close to the leftmost path in the execution tree. Thus, 
even though many processes are created, the vast majority of 
them perform wasted work, and do not contribute to improved 
performance. 

c) Benchmarks with unbalanced execution trees: The re- 
maining benchmarks have potential for parallel execution that 
the PPP can recover, but do not exhibit significant performance 
improvement. This is due to the shape of the execution trees 
they construct. Typical examples of this are the divide10 and 
times10 benchmarks. If one examines the source code, it is 
immediately obvious that the calls to “d” in the bodies of the 
first four clauses can be reduced in parallel, exploiting AND- 
parallelism. However, the resulting performance improvement 
depends on the distribution of work involved in each reduction. 
If one reduction takes ten times as much time as the other, then 
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Fig. 4. The divide (times) 10  execution tree. 

Fig. 5. The ops8 execution tree. 

executing both in parallel will yield a performance improvement 
of at most 10%. 

In fact, the skewed distribution of work is exactly what occurs 
in the t imes10 and divide10 benchmarks. Both these programs 
build the same execution tree, shown in Fig. 4. W e  can see that 
while the tree includes goals that are reduced in AND-parallel 
fashion, the resulting workload is extremely unbalanced; one 
goal reduces very quickly, while the other takes much more 
time. This is because the two subexpressions to be differentiated 
differ widely in complexity. 

The ops8 benchmark, which fares a little better, does so 
because of a more balanced execution tree (Fig. 5). 

d) The lack of support  in the PPP for partial evaluation: 
One program, palin25, is coded in a sequential manner, but 
could conceivably be sped up through the partial evaluation of 
shared data. The main clause of the program can be viewed as a 
software pipeline: 

serialize( L, R) :- 

pairlists ( L  , R , A ) ,arrange(A,T),numbered(T,l,N). 
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The PPP must execute these three goals sequentially; 
“arrange( A, T)” cannot execute until A is fully instantiated, 
just as “numbered( T, 1,N)” cannot execute until T is fully 
instantiated. 

Other execution models, however, such as [2] permit lists to 
be processed as pipelined data structures; values are passed at 
the head of the list to consumer processes, while new values are 
placed at the tail. At present, the PPP does not support this type 
of data pipelining; hence, the amount of concurrency it can 
recover from this benchmark is limited to the use of ANo-paral- 
lelism in the code for “arrange. ” 

e) Preserving the semantics of sequential Prolog: Since the 
PPP is intended as a parallel execution model for Prolog, the 
semantics of sequential Prolog are preserved under the PPP 
execution model. Sequential Prolog simulates nondeterminism 
by trying the clauses of a procedure in top-to-bottom order, 
restoring state in between each attempt. The PPP can initiate 
these attempts in parallel, but the answers are returned in the 
order that sequential Prolog would return them. Under certain 
circumstances, this can be quite costly. 

Suppose, for example, that a problem space is being searched 
by on-processes, and that one of the processes finds a solution 
quickly while other processes are still executing (Fig. 6). Be- 
cause the PPP preserves the left-to-right ordering of sequential 
Prolog, it must wait until processes to the left of the succeeding 
process have terminated before discovering the solution. This 
can have adverse effects on performance, as we will see shortly. 

f) Shallow versus deep  OR-Parallelism: Numerical re- 
searchers, including Hwang [23] and Syre [28], have distin- 
guished between the OR-parallel unification of clause heads and 
the subsequent OR-parallel processing of body goals. These two 
types of on-parallelism are referred to as “shallow” and “deep” 
on-parallelism. The performance results of the qsd and palm25 
benchmarks indicate that shallow OR-parallelism, even under 
ideal conditions, will produce only a slight performance im- 
provement. 

The qsd and palm25 benchmarks each contained a procedure 
compiled for shallow on-parallelism. These are shown below: 

partition procedure, qsd benchmark 

partition([XILl,Y,[XJLll,L2):-X< Y,!,partition(L,Y,Ll,L2). 

partition(~X(L1,Y,L1,~X~L21):-partition(l,Y,Ll,L2). 

partition([l,~,[l,[l). 

split procedure, palin benchmark 

split([X 1  LI,X,Ll,L2) :-!,split(L,X,Ll,L2). 

split([XILl,Y,[XILlI,L2):-before(X,Y),!,split(L,Y,Ll,L2). 

split([X~Ll,Y,LI,[X~L2l):-before(Y,X),!,split(L,Y,Ll,L2). 

split([l,-,[I,[]). 

W e  see with these two procedures that even though they are 
deterministic, some on-parallel execution is still possible through 
multiple head unification. In addition, the goal “before” can be 
executed in both clauses for “split,” making the OR-parallelism 
a little “deeper.” However, we saw in Table III that the 
employing of OR-parallelism for these procedures led to very 
small improvements in performance even under optimal condi- 
tions. This is because no performance is gained if the first clause 
is chosen, and even if other clauses are chosen a fast sequential 



TABLE 
BENCHMARKSWTH 

VI 
SPEEDUP >2 

Prog A 0 A0 
diff 269. x x 
VW 
mumath 
queens 
horesea 
deep-hak 
construct list - 
construct~str 
envir 
match-list 
match str 
match-nested. 
compiler 

I .04 24.9X 1.1.7 

x 6.12 I .04 9.62 i.79 
2.14 x 
3.56 Ai4 3.61 
X.61 x X 
x.so x x 
10.80 x x 
6.72 x x 
S.IX x x 

str 5.32 x x 
9.55 x x 

i hoyer 8.28 x x 
\ 0 I A0 AI 01 I prog A01 I 

ckt4 1.13 1.79 X.48 1.93 12.39 19.29 28.72 1 

Prolog system like the PLM can restore state in between clauses 
in approximately 20 microcycles, incurring little performance 
penalty. This suggests that the utilization of shallow on-parallel- 
ism is not likely to be very effective. In addition, we will see 
that, at least in the PPP, shallow OR-parallelism severely de- 
grades performance as the system becomes bogged down in 
execution overhead. 

By contrast, the query and ckt4 benchmarks, which employed 
deep oa-parallelism, performed well, even in the presence of 
execution overhead. This indicates, as expected, that deep OR- 
parallelism is more likely to yield significant performance im- 
provement than shallow OR-parallelism. 

3) Benchmarks with Higher Potential Speedup: Bench- 
marks with speedups of a factor of 2 or greater are shown in 
Table VI. 

4) Analysis: We see that the last eight benchmarks in the 
first table all showed speedups greater than five. This is because 
these programs create tasks that perform large amounts of work. 
This suggests that compilers for parallel logic programming 
systems should spend time determining which goals have large 
subtrees associated with them. These goals are good candidates 
for parallel execution. 

We also note that unlike the other symbolic differentiation 
benchmarks, the “dir program has a potential speedup of 
greater than 2. This is because diff differentiates four expres- 
sions of approximately equal complexity in parallel. The result- 
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TABLE VII 
SUPERMULTIPLICATIVE PERFORMANCE IN THE CKT~ BENCHMARK 

(No OVERHEAD) 

1 
IA 0 * 

product actual spcedup “4 diff I 

Il.13 8.4X 9.58 12.39 + 29% ’ 
1.79 X.48 

1113 1.79 8.48 
15.17 19.29 f 27% j 
17.15 2X.72 + 67% / 

ing computational load is well balanced, leading to improved 
performance. 

We also notice that the speedup obtained by combining AND 
and OR parallelism is always less than the product of the two 
techniques utilized separately. For all of these benchmarks, this 
effect is due to system saturation. By combining AND and OR 
parallelism, the maximum number of processes in the system is 
quickly reached, forcing sequential execution. 

5) Supermultiplicative Performance Improvements: One 
of the most interesting phenomena present in Table VI is shown 
in the results of the “ckt4” program. This benchmark is unique 
among the programs examined in that it can take advantage of 
ANo-parallelism, oa-parallelism, and intelligent backtracking. 
AND and OR parallelism yield a small bit of performance im- 
provement, while intelligent backtracking yields a large im- 
provement. However, the speedup obtained by combining intel- 
ligent backtracking with the other techniques is always greater 
than the product of the speedups when taken separately. Just 
how much “extra” performance can be obtained is shown in 
Table VII. 

We refer to phenomena of this type as supermultiplicative. 
Supermultiplicative performance improvements are counterintu- 
itive; one might wonder if such results are even possible, let 
alone how they arise. Fortunately, they are both possible and 
explainable. 

Supermultiplicative performance is counterintuitive because 
our intuition treats speedup techniques as applying to an entire 
program. When we find that a technique A speeds up a program 
by a factor S,, we assume that all parts of the program run S, 
times faster. So when technique B speeds up a program by a 
factor of S,, we naturally expect that both techniques will 
improve performance by a factor of S, * S,; we assume that the 
speedup techniques are uncorrelated. 

In some cases, this view of performance is correct. Speedup 
techniques that are independent of the program, such as a 
shortened cycle time or the addition of a cache, can be expected 
to improve performance of all parts of a program equally, 
resulting in multiplicative performance improvement when com- 
bined. However, when techniques are considered that affect 
different parts of the program in different ways, this view is no 
longer valid. Suppose, for example, that the program under 
consideration consists of two parts, each taking time Tl and T2 
to execute. Suppose furthermore that parts 1 and 2 can be sped 
up by factors of S, and S, using techniques A and B. 
(Technique A leaves part 2 unaffected, while technique B 
leaves part 1 unaffected.) If only one technique is employed, the 
performance is limited by the part of the program that the 
technique cannot improve. If both techniques are used, however, 
then both parts of the program run faster, and the resulting 
speedup can be substantially greater than the product of the 
speedups taken separately. This behavior is shown graphically in 
Fig. 7. 

Suppose we have a program divided into two parts, each part 
taking 4 hours. Suppose further that the first part can be run in 
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T=Z.S=4 
(4 > 1.6 l I .6 = 2.56) 

Fig. 7. A pictorial description of supermultiplicative performance 

one fourth the time using technique A, and the second in one 
fourth the time with technique B. If only technique A or B is 
used, the program takes 5 hours to run, giving a speedup of 1.6. 
If, however, both techniques are used, then the program takes 
only 2 hours. This gives a speedup of 4, as contrasted with 
1.6 x  1.6 = 2.56. In this example, the speedup techniques are 
correlated; supermultiplicative interaction occurs. 

This is exactly what happens with the ckt4 benchmark. Cer- 
tain parts of the program can be sped up by using intelligent 
backtracking, others by using AND-parallelism, and others by 
using oe-parallelism. These techniques are correlated; by com- 
bining them, each part of the problem is sped up, and supermul- 
tiplicative performance improvement is observed. We propose a 
better understanding of the correlation of Prolog performance 
improvement techniques as a topic for future research. 

F. More Realistic Performance Results 
While the optimal results just presented are useful for under- 

standing parallel Prolog, it is equally important to model the 
effects of execution overhead. As we have said earlier, most 
parallel execution models for Prolog are highly theoretical in 
nature, and tend to ignore the costs of multiprocessing, 

In fact, many aspects of execution overhead need to be taken 
into account when modeling parallel systems. For one, process 
creation time is always nonzero. Loading and saving process 
context takes time, as does the implementation of a process 
scheduling algorithm. Typically, parallelizing a logic program- 
ming system introduces new operations that are required to 
maintain the integrity of the system, such as searching a binding 
window chain [lo] or waiting to see if other processes have 
terminated [22]. These operations represent additional overhead 
that must be taken into account if realistic performance measure- 
ments are to be obtained. 

To model the effects of these and other multiprocessing tasks, 
we have added code to the PPP simulator that simulates the PPP 
architecture executing these routines at the register transfer 
level. Using information obtained from the existing PLM pro- 
cessor [ 151, the time required to perform the various multipro- 
cessing operations can be determined. For further details, the 
reader is referred to [ 181. 

The performance results of the PPP on the previous bench- 
mark set, taking into account the effects of parallel processing 
overhead, are shown in Tables VIII and IX. 
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TABLE VIII 
EXPECTED SPEEDUP OF BENCHMARKS (32 PROCESSORS,  OVERHEAD INCLUDED) 

1 Pm A 0 A0 
1 divide IO 0.x5 x x 
/ log10 
I OPS8 
I times IO 
1 dir 
[ palm25 
I qsd 

x x x 
135x x 
ox.3 x x 
2.5.3 x 
I II 0.38 (1.45 
I 65 0.38 0.41 
I 01 17.33 (1.69 
x x 
-t (2.62 x 

/ hanoi 
I mumath 

Y x 
x :.xX x 

, construcl~str 
1 deep-bak 
envir 
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match-list 

1 match-str 

o.s7 6.75 I .4x 
146 x x 
7.0 I x x 
6 90 x x 
2.6’) 0.4x I.10 
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530 x x 
4 4.? x x 

TABLE IX 
DEGRADATION OF PERFORMANCE DUE TO OVERHEAD 

DEGRADATION = 1 - (S,,,, /So,,) 
(AN ENTRY OP 00* INDICATES A VALUE SLIGHTLY GREATER THAN 0) 
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I , dlwdc II) 
1 log IO 
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TABLE X 
SUPERMULTIPLICATIVE PERFORMANCE IN THE 13x4 BENCHMARK (OVERHEAD 32. A plot of the PPP and Carlton/VanRoy curves for the PLM 

INCLUDED) compiler is shown in Fig. 9. 

IA (I ’ 
product nctual spectlup ?b dill I We caution against a strict comparison, for two reasons. For 

/ ‘.“’ 

one, Carlton and Van Roy employ a fixed number of processes 
8 4x 8 56 I I .2.3 3 I “/i, per processor. No such restriction exists in the PPP simulator, in 

1.42 8.48 12.04 15 24 26% 
] 1.01 1.42 8 4X 12.16 21.64 7 7 ?‘” 

which processors can pick up any available process in the 
process table. Additionally, the program compiled by the PPP 
parallel compiler is different from that used by Carlton and Van 

I) Analysis: First, we note that the supermultiplicative per- Roy, which is too large for the PPP simulator. Nonetheless, the 
formance improvements shown by the ckt4 benchmark remain shape of their performance curve is quite close to that of the 
even when execution overhead is taken into account (Table X). PPP, as are their performance values. This provides extremely 
The improvement over the product of individual speedups is as strong evidence of the 
good or better than the ideal case. on a multiprocessor. 

mance advantage to begin with, and is quickly overwhelmed by 

Referring back to Table VIII, we see that for the benchmarks 
that were compiled for shallow OR-parallelism, psd and palin25, 

process creation and window management overhead. 

performance dropped dramatically when overhead was modeled. 
This is because shallow oe-parallelism offers a small perfor- 

feasibility of fast compilation of Prolog 

Referring back to Fig. 9, the principal interesting feature of 

We also see that the overhead associated with AND-parallelism 
is much less than that associated with oa-parallelism. This is as 
expected. For one, the exploitation of oa-parallelism can lead to 
an explosion in the number of processes created. In addition to 
this, oa-processes must manage multiple binding environments. 
These two factors increase execution overhead dramatically, 
contributing to the poorer performance of OR-parallel bench- 
marks. 

2) Performance Versus # Processors: The benchmarks that 
performed the best using AND-parallelism and OR-parallelism 
were “compiler” and “query,” respectively, while the only 
benchmark that made use of intelligent backtracking was “ckt4.” 
The performance improvement of these benchmarks as a func- 
tion of the number of processors, taking into account the effects 
of execution overhead, is shown in Fig. 8.3 

tion time is limited by the proc&sor(s) that must execute more 
than one process (recall that “query” generates all solutions to 

the query benchmark is the dramatic rise in performance at 

its top level goal). When the number of available processors 
matches the number of processes, performance improves dra- 

P = 25 processors. This occurs because the benchmark creates 

matically. This suggests that a knowledge of the number of 
processors in the system will be helpful in the compilation of 
parallel logic programs, so that the compiler can attempt to 

25 processes. If fewer than 25 processors are available, execu- 

match the number of processes to the number of processors. 
The “ckt4” benchmark exhibits a performance improvement 

greater than the number of processors, due to intelligent back- 
tracking. The performance of this benchmark when the effects of 
intelligent backtracking are removed is shown in Fig. 10. 

This figure and Fig. 9 show pictorially what we have already 
demonstrated quantitatively: intelligent backtracking can interact 
supermultiplicatively with AND-parallelism and OR-parallelism to 
produce improved performance. 

The results for the compiler are shilar to those reported by IV. CONCLUSIONS 
Carlton and Van Roy in [3]. In this paper, the authors report g 
peak speedup of 6.2 for 11 processors. For the PPP, a speedup 
of 7.6 was obtained with 11 processors, with a peak of 9.53 for 

‘We use the term “performance improvement” instead of the more 
customary term “speedup” due to the use of intelligent backtracking in the 
ckt4 benchmark. Intelligent backtracking is an algorithm modification, so the 
strict definition of speedup does not apply to the “ckt4” benchmark. For the 
query and compiler benchmark, however, the results shown reoresent 

We summarize the main conclusions of this paper below. 

S-p&p. 

A. The Effectiveness of Restricted AND-PW’a~k~iS??I 

The results indicate that for small programs, like the symbolic 
differentiation benchmarks, restricted AND-parallelism is not ef- 
fective in improving performance; when execution overhead is 
taken into account these programs ran no more than twice as 
fast. Better results are obtained on large programs like the 
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Boyer-Moore theorem prover and the Berkeley Prolog com- 
piler. 

It is difficult to develop a metric for the cost of parallelizing 
an execution model. We propose the following definition: let the 
optimal speedup of a benchmark be the speedup obtained on an 
infinite number of processors with no parallel execution over- 
head. Let the real speedup be the speedup obtained on an infinite 
number of processors with execution overhead taken into ac- 
count. The cost of parallelizing an execution model for a particu- 
lar benchmark is then defined to be the ratio of the real speedup 
to the optimal speedup, subtracted from one. Thus, an execution 
model that requires little overhead when parallelized has cost 
close to zero, while an execution model that requires large 
amounts of overhead to support parallel execution has a cost 
close to one. Note that this is just the derivation from optimality 
measure reported in Table IX, averaged over the benchmark set. 

Based on this definition, the results indicate that restricted 
AND-parallelism in the PPP can be utilized at a cost of about 
20% (see Table IX). Hermenegildo, in [22], estimates the cost 
of restricted AND-parallelism and in his execution model, the 
RAP-WAM, to be no greater than 14%. This figure is based on 
simulation studies of two programs, both of which were written 
solely to test the RAP-WAM model. Hermenegildo states quite 
clearly that the purpose of simulation in his thesis was solely to 
validate the model, and was not intended to be an exhaustive 
study. Since the PPP supports on-parallelism in addition to 
AND-parallelism, and since the results presented here are based 
on studies of 25 preexisting Prolog programs, we believe that 
the PPP compares favorably to the RAP-WAM. 

We believe, however, that single-solution computation occurs 
more often in Prolog programs, and will dominate as Prolog 
becomes more and more widely used. More likely than not, the 
user will not be interested in all possible chip designs, or all 
proofs of a theorem, but instead will seek a single solution that 
satisfies the constraints of the problem. For a single-solution 

with the others showing factors of less than two. 

ously, honoring the semantics of Prolog in an OR-parallel execu- 
tion environment has the potential to severely inhibit perfor- 
mance . 

In an attempt to measure the degree of performance inhibition 
caused by the semantics of sequential Prolog, four single-solu- 
tion benchmarks were recompiled with a relaxed version of 
solution ordering. This was achieved by adding a “quit” in- 
struction in the code, so that when any stream of computation 
executed it, even if other OR-siblings were still running, the 
entire program terminated. The results of the original and modi- 
fied versions of the benchmarks are shown in Table XI. (The 
PAR column shows the original results, while the PAR* column 
shows the results with relaxed semantics.) 

We see in Table IX that AND-parallelism improves the perfor- 
mance of the PLM compiler by a factor of ten, and speeds up the 
Boyer-Moore theorem prover by a factor of seven. These are 
significant performance improvements, on nontrivial, useful Pro- 
log programs; we believe they should lay to rest any doubts 
about the potential utility of restricted AND-parallelism. 

B. OR-Parddism and the Semantics of Prolog 
oa-parallelism comes at a higher cost than ANo-parallelism, 

owing chiefly to the overhead of managing multiple binding 
environments. Thus, it should be utilized more carefully. In 
addition, the question of single-solution versus all-solution com- 
putation is extremely important. 

We see that even a slight change in the semantics of the PPP 
yields a dramatic performance improvement. We caution, how- 
ever, against an improper interpretation of these figures. For 
example, one cannot divide the PAR* column into the SEQ 
column to obtain “speedup” figures comparable to those in 
Table III. Such a calculation is only meaningful when comparing 
two versions of the same algorithm, which is not the case with 
the PAR and PAR* results. Nonetheless, it seems evident that 
for single-solution computation, oa-parallelism is not likely to 
yield significant performance improvement unless the semantics 
of sequential Prolog are relaxed. We note that this is true 
regardless of the execution model used. All parallel execution 
models that preserve the semantics of sequential Prolog have this 
same problem: a solution to the original query may be found 
before searches of the branches to its left have terminated. Our 
results therefore indicate that for maximum potential perfor- 
mance improvement, the semantics of sequential Prolog should 
be discarded. 

In spite of this conclusion, we feel the decision to adhere to 
If all solutions to a problem are desired, then os-parallelism the semantics of Prolog for the duration of the experiment was a 

becomes equivalent to AND-parallelism in the sense that all valid one. If the possibility exists to achieve significant perfor- 
descendants of a node represent tasks that must be carried out. mance improvement without the design of a new language, then 

TABLE XI 
THE EFFECT OF PRESERVING THE SEMANTICS OF SEQUENTIAL PROLOG 

/ NOIlMAIJZI:I~ l:XI:(‘l ’ I’ION ‘I’IMIX / 
PA II + 

Unlike single-solution computation, all processors perform use- 
ful work, which leads to significant speedup. This is the case 
with the query benchmark, which yielded a performance im- 
provement of 17. So for all-solution computation, OR-parallelism 
appears to be a useful technique to improve Prolog performance. 
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such a possibility should be investigated. Indeed, the results 
indicate that through the utilization of restricted AND-parallelism, 
significant performance improvement of standard Prolog is 
achievable. However, the results also clearly show that the 
adherence to the semantics of sequential Prolog limit the utility 
of oa-parallelism, and that for further improvements modifica- 
tions to Prolog are needed. 

C. Costs and Benefits of Process Creation 
The most important result shown in Tables III, VIII, and IX is 

the importance of cost/benefit analysis in parallel logic program- 
ming. The decision of whether or not to execute a goal in 
parallel must be made with regard to the costs and benefits of 
parallel computation. Simple visual inspection of a program is 
not sufficient. Many programs that at first glance contain the 
potential for parallel computation actually run slower when the 
costs of multiprocessing are taken into account. The actual costs 
of parallel processing will depend on the particular execution 
model under study, but we believe Tables III, VIII, and IX 
dramatically show the importance of a detailed consideration of 
the costs and benefits of parallel goal reduction in parallel logic 
programming systems. The construction of a cost/benefit model 
as an aid to compilation is proposed as a topic of future 
research. 

D. Supermultiplicative Behavior in Logic Programs 
Finally, we note that at least one program exhibits supermulti- 

plicative behavior when AND-parallelism, oa-parallelism, and 
intelligent backtracking are combined. While we recognize that 
this is only one example, there is every likelihood that other 
programs not studied can exhibit similar behavior. This suggests 
that the effects of various performance enhancing techniques on 
logic programs should be considered in toto, and not in isola- 
tion from each other. If the techniques used map properly onto 
the bottlenecks of the problem, improvements greater than those 
attributable to individual techniques may be observed. 

V. FUTURE WORK 

The results of our work suggest several areas for future 
investigation. Since the decision of whether or not to execute a 
goal in parallel should be made according to a cost/benefit 
analysis, intelligent compilers should be developed for such a 
task. Side effects in parallel logic programs present difficult 
challenges that future research will have to address. We have 
also seen that the shape of the execution tree is an important 
factor in determining Prolog performance. This suggests that 
source-to-source program transformation may be useful in creat- 
ing more efficient parallel logic programs. Further work remains 
to be done in analyzing the effect of memory system latency on 
the performance of parallel logic programs; clearly the single- 
cycle assumptions presented here should be modified to take into 
account bank conflicts, cache coherency issues, and so forth. 
Finally, we have already noted the possibility of supermultiplica- 
tive behavior in parallel logic programs. We believe this area 
merits considerable further study. 
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