
1434 IEEETRANSACTIONSONCOMPUTERS,VOL.39,NO. 12,DECEMBER 1990

The Performance of Parallel Prolog Programs
Barry S. Fagin, Member, IEEE, and Alvin M. Despain, Member, IEEE

Abstract-This paper presents performance results for a parallel exe-
cution model for Prolog that supports AND-parallelism, oa-parallelism,
and intelligent backtracking. The results show that restricted ANo-paral-
lelism is of limited benefit for small programs, but produced speedups
from 7 to 10 on two large programs. on-parallelism was generally not
found to be useful for the benchmarks examined if the semantics of
Prolog were preserved.

Of particular interest is the phenomenon of supermultiplicative behav-
ior, in which the performance improvement obtained when more than
one technique is employed is greater than the product of the perfor-
mance improvements due to each technique individually. The implica-
tions of the performance results for parallel Prolog systems are dis-
cussed, and directions for future work are indicated.

Index Terms-AND-parallelism, intelligent backtracking, logic pro-
gramming, OR-parallelism, parallel symbolic computing, Prolog, super-
multiplicative phenomena.

I. INTRODUCTION

T HIS work presents some performance results of a new
execution model for parallel Prolog: the Parallel Prolog

Processor model, or PPP. The execution model and its underly-
ing architecture were developed as part of the Aquarius Project
at the University of California at Berkeley. The Aquarious
Project is a research investigation into the underlying issues of
high performance symbolic computation, and in particular high
performance execution of Prolog.

This paper attempts to shed new light on the behavior of
parallel logic programs. Many execution models for parallel
logic programming have been described in the literature. These
include Conery’s AND/OR process model [9], a general oa-paral-
lel execution model [2], Li and Martin’s Sync model [24],
various dataflow models [11, [20], the Japanese Parallel Infer-
ence Engine [26], and the restricted AND-parallel execution
model of Hermenegildo [22]. These models are theoretically
powerful, but little is known about how these models would
behave on actual programming tasks. Simulation results are
extremely rare, and those studies that do exist are based on
extremely small, “toy” programs [lo], [22]. As a result, we
know very little about the utility of parallel logic programming
on realistic programs. This paper presents a detailed simulation
study of a parallel Prolog execution model on a variety of
benchmark programs, including a theorem prover and a Prolog
compiler.

Our results indicate that for small programs restricted AND-
parallelism is not effective in improving performance; even with
32 processors these programs ran no more than twice as fast.
Better results are obtained with larger programs like the

Manuscript received May 11, 1988; revised October 13, 1988. This work
was supported in part by the Defense Advanced Research Projects Agency,
Arpa Order 487 1, and was monitored by Space and Naval Warfare Systems
Command under Contract NOOO39-84-C-0089.

B. S. Fagin is with the Thayer School of Engineering, Dartmouth College.
Hanover, NH 03755.

A. M. Despain is with the Department of Electrical Engineering Systems,
University of Southern California, Los Angeles, CA 90089.

IEEE Log Number 9040079.

Boyer-Moore theorem prover and the Berkeley PLM complier;
these programs ran 7 and 10 times faster, respectively. The
experiments also show that oa-parallelism is not particu-
larly effective for single-solution benchmarks. While the
“mu-math” and “queens” benchmarks showed speedup factors
of 4 and 5, the remaining single-solution programs showed less
than two. Finally, we discovered that Prolog programs could
exhibit supermultiplicative behavior. In particular, the speedup
obtained in the “ckt4” benchmark by combining aNo-paralle-
lism, OR-parallelism, and intelligent backtracking was 77 %
greater than the product of the speedups of each technique taken
individually.

The preliminary results of this research were first presented at
the 14th International Symposium on Computer Architecture
[19]. Since then, the simplified timing assumptions underlying
our simulation results have been replaced with more realistic
ones. We have also enlarged the benchmark set to include the
Boyer-Moore theorem prover and the VanRoy Prolog compiler.
Further work has also shown that preserving the semantics
of sequential Prolog can have strongly negative performance
consequences; this is discussed briefly here. Finally, this paper
includes an analysis of supermultiplicative speedup in Prolog
programs not provided in [191.

This paper is divided into five sections. Section II briefly
explains the type of concurrency inherent in Prolog. Section III
presents the simulated results of the PPP execution model and
architecture on an extensive set of Prolog benchmarks, while
Section IV presents our conclusions. Section V suggests possibil-
ities for future work.

II. PARALLELISMIN PROLOG

Throughout this section, the reader is assumed to be familiar
with Prolog. Readers unfamiliar with the language are referred
to [8] and [27] as excellent introductory texts.

There are four basic types of parallelism inherent in Prolog:
AND-parallelism, os-parallelism, stream parallelism, and unifi-
cation parallelism.

A. AND-Pardkhm

When Prolog unifies a goal literal with the head of a com-
pound clause C, the literals in the body of C are then unified
sequentially. It is also possible, however, to resolve these literals
in parallel if sufficient computing resources are available. This
type of parallel execution is called AND-pmd/ekSRZ: it is the
parallel traversal of AND subtrees in the execution tree. An
example of AND-parallelism is shown in Fig. 1.

The principal difficulty with AND-parallelism is the problem of
binding conflicts. If AND-SUbtK32S of the execution tree are
executed in parallel, the resulting unification substitutions may
conflict. For example, consider the program

f(x) :-a(x), b(X).

41)

b(2).

0018-9340/W/1200-1434$01.00 0 1990 IEEE

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS 1435

= ONE PROCESS

Fig

The literals a(X) and b(X) can theoretically be resolved in
parallel. However, if both resolution steps are attempted concur-
rently, one will attempt to apply the unifying substitution X = 1,
while the other will attempt X = 2.

AND-parallelism in which goals are allowed to execute in
parallel even though they may bind shared variables is com-
monly referred to as unrestricted AND-parallelism. It requires
some sort of synchronization for shared variables as well as a
method of filtering sets of variable bindings returned from
nondeterministic literals. (In the previous example, the set of
substitutions (X = 1, X = 2) and (X = 2, X = 3) must be
intersected to produce X = 2.) Because such schemes introduce
considerable run-time overhead, most schemes for AND-parallel-

ism incorporate program annotation to denote which goals
produce and consume variable values [9], [121. This information
is then used to ensure that goals execute in AND-parallel fashion
only if the resulting substitutions are conflict-free. This type of
AND-parallelism is called restricted AND-parallelism [111. The
PPP execution model employs this type of AND-parallelism;
variable binding conflicts are avoided through the use of com-
pile-time analysis. The interested reader is referred to [4].

In sequential Prolog, when a goal g with principal functor f
is resolved by a Prolog program, unification is attempted with
each clause in the procedure P for f. The clauses in P are
examined from top to bottom. If unification with the head of a
clause is successful, execution continues with the goals in the
body, if any. If unification fails, the state of the machine is
restored and the next clause in P is attempted.

However, given sufficient computing resources, it is also
possible to perform the unification of g with all clauses in P
and then execute the remaining subdirections associated with
successful unifications in parallel. This type of concurrent execu-
tion is called OR-parallekn: it is the parallel traversal of OR

subtrees in the execution tree of the program.

1.

For example, in the following program

main :- a(X),p(X).

a(1) :-b,c,d.
42) :- e,f, g.
a(3) :- h,i.

(other clauses for 6, c, etc.)

main?

Example 1 .O
the simultaneous unification of “a(X)” with “a(l),” “a(2),”
and “a(3),” and the concurrent attempts to resolve their associ-
ated subgoals would be an example of on-parallelism. This is
shown below in Fig. 2.

OR-parallelism has been studied by numerous researchers [5],
[2], [25], [lo]. The chief difficulty with OR-parallelism is the
problem of multiple binding environments. Consider the pre-
vious program. Each of the three children of a(X) must see the
variable X as unbound, and must be able to bind it to its own
particular value, independent of the actions of the other children.
Thus, even though the first child may have bound X to 1, the
second child must not “see” that binding, instead being able to
bind X to 2. Furthermore, there must be a way to transmit these
bindings of X to the goal p(X).

Most research in oa-parallelism execution of logic languages
deals with ways to solve this problem. The PPP employs a
technique called “hash windowing,” first suggested by Borg-
wardt [2]. Early indications are that hash windowing outper-
forms other techniques [lo], [6]. A detailed description of hash
windowing in the PPP and the reasons for choosing it over other
schemes is provided in [191.

C. Stream Parallelism
Stream parallelism has also been studied as a vehicle for

concurrent computation [21], [13]. Stream parallelism in Prolog
occurs when literals pass a “stream” of variable bindings to

1436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39. NO. 12, DECEMBER 1990

Fig

other literals, each of which is operated on concurrently. Literals
that produce the bindings are called “producers”; literals that
operate on the bindings generated by producers are called “con-
sumers . ’ ’

For example, consider the following program

main:-int(N), test(N), print(N).

int(0).
int(N):-int(M), N is M+ 1.

in which test(N) is any procedure that makes use of N. If,
when int(N) succeeds, a new process is created that tests and
prints N at the same time as further solutions for int(N) are
generated, then such concurrent execution would be stream
parallelism.

While at first glance stream parallelism may appear to be a
new type of concurrency, in fact its effects can be duplicated
using OR-parallelism. This is discussed in detail in [19].

D. Unification Parallelism
The last type of parallelism is unification parallelism. Unifica-

tion parallelism is of a finer grain than the other types men-
tioned, occurring when the unification of multiple arguments in
the head of a clause proceeds concurrently. For example, in the
program

main:-a(X,Y), ...

the unification of X with f(b,c) and Y with g(d) could occur
concurrently, using unification parallelism.’

‘This contrasts with the definition of unification parallelism of Hwang et
al. in [23], which defines unification parallelism as “the parallel matching of
clauses in the Prolog database with the goal clause and the partial instantia-
tion of variables to constant values.” Hwang’s definition is a subcase of
oa-parallelism as we have defined it; other sources refer to it as “shallow”
oa-parallelism [28]. Since our definition is corroborated by other sources
(for example, 1261) we will continue to use unification parallelism as we
have defined it.

2.

While it is known that in the worst case unification is very
unlikely to be sped up by parallel computation [161, most of the
unification encountered in typical Prolog programs can be [7].
The addition of special hardware and the use of instruction
scheduling to exploit unification parallelism is currently an ac-
tive area of research. However, we note that unification paral-
lelism occurs at the instruction set level, and not at the level of
computing processes. Unification parallelism is of a much finer
grain than AND or OR parallelism. Since this paper is concerned
with the coarse-grained parallelism of Prolog, we will not
discuss unification parallelism further.

III. RESULTS

In this section, we present and discuss the performance of a
parallel Prolog execution model, the PPP, on several benchmark
programs. The PPP is an execution model for Parallel Prolog
supporting restricted AND-parallelism and err-parallelism. It is
implemented through compilation to an abstract Prolog instruc-
tion set, a superset of the Berkeley PLM instruction set [17],
[151. A detailed description of the PPP execution model and
instruction set is available in [181.

The results presented here represent the most comprehensive
study of parallel Prolog known to the authors. We begin the
section with a brief discussion of the modeled system and how
the results were obtained. We then present the results of a
32-processor system on a large benchmark set, and discuss them
in detail.

A. The Simulator
The results presented in this section were obtained with a

multiprocessor simulator, written in C, and running under 4.3
BSD UNIX. The simulator is based on the level 1 PLM simula-
tor developed by Tep Dobry 1141, suitably modified to support
the multiprocessing operations and new instructions of the PPP.

The simulator models an arbitrary number of processors
connected to a single cycle memory system, as shown in Fig. 3.

Each processor is an extended version of the Berkeley PLM

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS

I I
I-CYCLE ME.MORY

Fig. 3. The system under study.

TABLE I
THE BENCHMARKS

divide 10 13 symbolic differentiation
log10 13 ”
OPS8 13 ”
times10 13 ”
diff 19 ”
palin 24 index a list
qsd 20 quickson 50 items
W V 37 database quay
COlIl 4 deterministic concat
con6 6 nondetetmintstic concat
mumath 28 simple. theorem prover
qu- 41 solve Cqueens problem
boresea 53 test.9 procedure calls
consUuct_list 28 tests list construction
COnstnlCI~S~ 28 tests sbuctme construction
deep-bak 25 mts deep backtracking
envir 19 tests environment allocation
ma@ 2s stmple map coloring problem
match-list 31 tests list unification
match-sn 38 tests stmctue unitication
match-nested-su 24 test.9 nested structure unification
knight 27 kniight’s tour, 4 X 4 board
compiler 1597 prolog compiler
boyer 337 Boye~Moore Theorem Rover
ckt4 35 de.si~ sun~le circuit _-------------------____ -___ ____

- -

Prolog processor [15]. The number of processors can be speci-
fied at run time, defaulting to 32.

Simulation is interleaved at the level of PPP instructions. That
is, during a simulation run, processor 0 will be simulated for one
PPP instruction, then processor 1, and so on. Processors that are
not currently executing PPP code scan a process table for
available work.

B. How the Speedup of the PPP is Reported
The speedup for a program P for N processors is obtained

by dividing the execution time of P compiled for sequential
execution by the execution time of P compiled for parallel
execution on an N-processor system. Since a uniprocessor
executing a program P compiled for parallel execution may run
much slower than a uniprocessor executing P compiled for
sequential execution, owing to the costs of concurrent process-
ing, negative speedups will be exhibited when the costs of
multiprocessing outweigh the benefits.

C. The Benchmarks
A total of 24 benchmarks were examined. All benchmarks

were examined for opportunities to exploit AND-parallelism,
OR-parallelism, and intelligent backtracking. The benchmarks
used are shown below in Table I, along with their size and a
brief description.

TABLE II
BENCHMARK SIZE (W-INSTRUCTIONS)

divide10 198 214 x x
log10 192 x x x
ops8 190 206 x x
t imes10 198 214 x x
diff 360 364 x x
palin 190 193 190 193
qd 122 126 119 123
4”T 389 392 389 392
COnl 31 x x
con6 28 x i8 x
mumath 136

;16
139 x

queens 214 203 227
boresea 216 220 x x
constluct~list 418 422 x x
ConsmtCt~SU 518 SO8 x x
deep-b.& 85 89 8.5 89
envir 166 170 x x
ma@ 144 144 x
match-list 528 332 x x
match-w 126 730 x x
match-nested-str 593 597 x
knight 387 x ;93 x
compiler 10214 10222 x x
boyer 2603 2607 x x

prog seq A 0 I A0 AI 01

1437

One of our criticisms of previous work in parallel Prolog
research was the small number of programs under study and
their relatively trivial nature. In spite of this, our attempt to
improve the situation has only been partially successful. While
this work represents the largest study of parallel Prolog pro-
grams known to the authors, and while most of these bench-
marks are larger than others previously studied, only a few of
them can be regarded as “serious” programs. Nonetheless, we
believe the results to be a significant first step.

None of these benchmarks use “assert” or “retract,” Prolog
predicates that modify the source program. The problems of side
effects and self-modifying code in parallel execution are well
known; a thorough treatment of them is beyond the scope of this
paper. W e suggest this topic as an area of future work.

The number of W-code instructions per benchmark are shown
in Table II. This table lists the number of W-code instructions in
the sequential version of the benchmark, as well as versions
complied for AND-parallelism, OR-parallelism, and intelligent
backtracking.

W e note that only “ckt4” was able to take advantage of our
semi-intelligent backtracking scheme, although opportunities for
semi-intelligent backtracking may also exist in the compiler.
This suggests that opportunities for semi-intelligent backtracking
may be rare among Prolog programs.

D. Compilation Decisions in the PPP
Currently, programs are hand-compiled for simulation on the

PPP simulator. Potential points for AND-parallel and OR-parallel
execution are identified by the programmer, and then the sequen-
tial W-code is modified appropriately. W e believe that the
automatic detection of parallel execution points by a Prolog
compiler is feasible, and suggest further investigation into this
area. A simple algorithm for parallel execution point detection is
given in [18].

1438

TABLE III
EXPECTEDSPEEDUPOFBF.NCHMARKS(~~ P~~~E~~~R~,N~OVERHEAD)

/ divide IO

1 dcrp-hak
I cn\ lr

1 match nested str -
/knight
, compilct
I bovcr

E. Upper Bounds: Performance Under Optimal
Conditions

To better understand the upper limits on the performance of
the PPP, we first present the performance results of an “ideal”
32-processor PPP system below.’ These results assume that all
operations associated with multiprocessing take zero time: they
represent upper bounds on the performance of the PPP.

The letters “ A, I ” “0,” and “I” stand for AND-parallelism,
OR-parallelism, and intelligent backtracking. The entries in a
particular column represent the speedups obtained for bench-
marks compiled using the techniques corresponding to the letters
in the column. An “x” indicates that a benchmark could not
exploit a particular technique.

We see immediately that a wide range of speedups are ob-
tained. In some cases, a great deal of speedup is possible, while
in other cases little improvement can be achieved. Before pre-
senting more realistic performance measurements, we examine
the benchmarks that showed relatively poor potential improve-
ments (< 2) even under optimal conditions, in an effort to
understand the limits of performance of parallel Prolog pro-
grams.

I) Poorly Performing Benchmarks: Benchmarks which
showed no speedup of greater than 2 are shown below in Table
IV.

2) Analysis: There are five factors limiting the performance
of the programs in Table IV:

1) no parallel execution of goals possible
2) the position of solutions in execution tree
3) an unbalanced execution tree
4) no support for partial evaluation of shared data
5) the semantics of sequential Prolog.

‘The present version of the simulator supports a maximum of 32 pro-
cesses, so additional processors would not be effective.

[EEETRANSACTIONSON COMPUTERS.VOL.39,NO.12.DECEMBERl9~

TABLE IV
BENCHMARKS WITH SPEF.DUP < 2

lprog77 0 A0
t-
/ divide IO I25 x s

I con I x x Y
1 man0 x I.13 \(
1 kni’ght x 1.X2 s -I

TABLE V
FACTORSLIMITINGBENCHMARKPERFORMANCE(~~PROCESSOR~)

divide IO 3
logI I
0p8 3
times10 3
paIin25 3, 4
qsd 3
con I I
con6 s
map0 2. 5
knight 2, 5 ~--~~__

The factor appropriate to each benchmark is shown in Table
V.

We note that only the factors four and five are properties of
the PPP: the other factors are properties of the benchmarks
themselves.

a) Benchmarks with no inherent concurrency: We see in
Table III that the log10 and con1 benchmarks utilized neither
AND-parallelism nor OR-parallelism. An inspection of these
benchmarks will show that at any point, only one goal exists that
can be reduced. Thus, these benchmarks are inherently sequen-
tial, and cannot be sped up using parallel goal reduction.

b) Positioning of solutions in the execution tree: The map0
and knight benchmarks are quite similar; they perform an OR-
parallel search of a problem space for a solution satisfying
certain constraints. With OR-parallelism, the further to the right
a solution is in the execution tree, the greater the benefits to be
gained from OR-parallel computation. Solutions near the left
correspond to those that would be found more quickly by the
left-to-right traversal of sequential Prolog, and represent less of
a performance win.

With the map0 and knight benchmarks, the desired solution
lies very close to the leftmost path in the execution tree. Thus,
even though many processes are created, the vast majority of
them perform wasted work, and do not contribute to improved
performance.

c) Benchmarks with unbalanced execution trees: The re-
maining benchmarks have potential for parallel execution that
the PPP can recover, but do not exhibit significant performance
improvement. This is due to the shape of the execution trees
they construct. Typical examples of this are the divide10 and
times10 benchmarks. If one examines the source code, it is
immediately obvious that the calls to “d” in the bodies of the
first four clauses can be reduced in parallel, exploiting AND-
parallelism. However, the resulting performance improvement
depends on the distribution of work involved in each reduction.
If one reduction takes ten times as much time as the other, then

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS

Eacanim vu.
‘dwide(limcr)lO’ benhna

. . .
z?F&

Fig. 4. The divide (times) 10 execution tree.

Fig. 5. The ops8 execution tree.

executing both in parallel will yield a performance improvement
of at most 10%.

In fact, the skewed distribution of work is exactly what occurs
in the t imes10 and divide10 benchmarks. Both these programs
build the same execution tree, shown in Fig. 4. W e can see that
while the tree includes goals that are reduced in AND-parallel
fashion, the resulting workload is extremely unbalanced; one
goal reduces very quickly, while the other takes much more
time. This is because the two subexpressions to be differentiated
differ widely in complexity.

The ops8 benchmark, which fares a little better, does so
because of a more balanced execution tree (Fig. 5).

d) The lack of support in the PPP for partial evaluation:
One program, palin25, is coded in a sequential manner, but
could conceivably be sped up through the partial evaluation of
shared data. The main clause of the program can be viewed as a
software pipeline:

serialize(L, R) :-

pairlists (L , R , A) ,arrange(A,T),numbered(T,l,N).

1439

The PPP must execute these three goals sequentially;
“arrange(A, T)” cannot execute until A is fully instantiated,
just as “numbered(T, 1,N)” cannot execute until T is fully
instantiated.

Other execution models, however, such as [2] permit lists to
be processed as pipelined data structures; values are passed at
the head of the list to consumer processes, while new values are
placed at the tail. At present, the PPP does not support this type
of data pipelining; hence, the amount of concurrency it can
recover from this benchmark is limited to the use of ANo-paral-
lelism in the code for “arrange. ”

e) Preserving the semantics of sequential Prolog: Since the
PPP is intended as a parallel execution model for Prolog, the
semantics of sequential Prolog are preserved under the PPP
execution model. Sequential Prolog simulates nondeterminism
by trying the clauses of a procedure in top-to-bottom order,
restoring state in between each attempt. The PPP can initiate
these attempts in parallel, but the answers are returned in the
order that sequential Prolog would return them. Under certain
circumstances, this can be quite costly.

Suppose, for example, that a problem space is being searched
by on-processes, and that one of the processes finds a solution
quickly while other processes are still executing (Fig. 6). Be-
cause the PPP preserves the left-to-right ordering of sequential
Prolog, it must wait until processes to the left of the succeeding
process have terminated before discovering the solution. This
can have adverse effects on performance, as we will see shortly.

f) Shallow versus deep OR-Parallelism: Numerical re-
searchers, including Hwang [23] and Syre [28], have distin-
guished between the OR-parallel unification of clause heads and
the subsequent OR-parallel processing of body goals. These two
types of on-parallelism are referred to as “shallow” and “deep”
on-parallelism. The performance results of the qsd and palm25
benchmarks indicate that shallow OR-parallelism, even under
ideal conditions, will produce only a slight performance im-
provement.

The qsd and palm25 benchmarks each contained a procedure
compiled for shallow on-parallelism. These are shown below:

partition procedure, qsd benchmark

partition([XILl,Y,[XJLll,L2):-X< Y,!,partition(L,Y,Ll,L2).

partition(~X(L1,Y,L1,~X~L21):-partition(l,Y,Ll,L2).

partition([l,~,[l,[l).

split procedure, palin benchmark

split([X 1 LI,X,Ll,L2) :-!,split(L,X,Ll,L2).

split([XILl,Y,[XILlI,L2):-before(X,Y),!,split(L,Y,Ll,L2).

split([X~Ll,Y,LI,[X~L2l):-before(Y,X),!,split(L,Y,Ll,L2).

split([l,-,[I,[]).

W e see with these two procedures that even though they are
deterministic, some on-parallel execution is still possible through
multiple head unification. In addition, the goal “before” can be
executed in both clauses for “split,” making the OR-parallelism
a little “deeper.” However, we saw in Table III that the
employing of OR-parallelism for these procedures led to very
small improvements in performance even under optimal condi-
tions. This is because no performance is gained if the first clause
is chosen, and even if other clauses are chosen a fast sequential

TABLE
BENCHMARKSWTH

VI
SPEEDUP >2

Prog A 0 A0
diff 269. x x
VW
mumath
queens
horesea
deep-hak
construct list -
construct~str
envir
match-list
match str
match-nested.
compiler

I .04 24.9X 1.1.7

x 6.12 I .04 9.62 i.79
2.14 x
3.56 Ai4 3.61
X.61 x X
x.so x x
10.80 x x
6.72 x x
S.IX x x

str 5.32 x x
9.55 x x

i hoyer 8.28 x x
\ 0 I A0 AI 01 I prog A01 I

ckt4 1.13 1.79 X.48 1.93 12.39 19.29 28.72 1

Prolog system like the PLM can restore state in between clauses
in approximately 20 microcycles, incurring little performance
penalty. This suggests that the utilization of shallow on-parallel-
ism is not likely to be very effective. In addition, we will see
that, at least in the PPP, shallow OR-parallelism severely de-
grades performance as the system becomes bogged down in
execution overhead.

By contrast, the query and ckt4 benchmarks, which employed
deep oa-parallelism, performed well, even in the presence of
execution overhead. This indicates, as expected, that deep OR-
parallelism is more likely to yield significant performance im-
provement than shallow OR-parallelism.

3) Benchmarks with Higher Potential Speedup: Bench-
marks with speedups of a factor of 2 or greater are shown in
Table VI.

4) Analysis: We see that the last eight benchmarks in the
first table all showed speedups greater than five. This is because
these programs create tasks that perform large amounts of work.
This suggests that compilers for parallel logic programming
systems should spend time determining which goals have large
subtrees associated with them. These goals are good candidates
for parallel execution.

We also note that unlike the other symbolic differentiation
benchmarks, the “dir program has a potential speedup of
greater than 2. This is because diff differentiates four expres-
sions of approximately equal complexity in parallel. The result-

IEEETRANSACTIONSONCOMPUTERS,VOL.39,NO.12,DECEMBER1990

TABLE VII
SUPERMULTIPLICATIVE PERFORMANCE IN THE CKT~ BENCHMARK

(No OVERHEAD)

1
IA 0 *

product actual spcedup “4 diff I

Il.13 8.4X 9.58 12.39 + 29% ’
1.79 X.48

1113 1.79 8.48
15.17 19.29 f 27% j
17.15 2X.72 + 67% /

ing computational load is well balanced, leading to improved
performance.

We also notice that the speedup obtained by combining AND
and OR parallelism is always less than the product of the two
techniques utilized separately. For all of these benchmarks, this
effect is due to system saturation. By combining AND and OR
parallelism, the maximum number of processes in the system is
quickly reached, forcing sequential execution.

5) Supermultiplicative Performance Improvements: One
of the most interesting phenomena present in Table VI is shown
in the results of the “ckt4” program. This benchmark is unique
among the programs examined in that it can take advantage of
ANo-parallelism, oa-parallelism, and intelligent backtracking.
AND and OR parallelism yield a small bit of performance im-
provement, while intelligent backtracking yields a large im-
provement. However, the speedup obtained by combining intel-
ligent backtracking with the other techniques is always greater
than the product of the speedups when taken separately. Just
how much “extra” performance can be obtained is shown in
Table VII.

We refer to phenomena of this type as supermultiplicative.
Supermultiplicative performance improvements are counterintu-
itive; one might wonder if such results are even possible, let
alone how they arise. Fortunately, they are both possible and
explainable.

Supermultiplicative performance is counterintuitive because
our intuition treats speedup techniques as applying to an entire
program. When we find that a technique A speeds up a program
by a factor S,, we assume that all parts of the program run S,
times faster. So when technique B speeds up a program by a
factor of S,, we naturally expect that both techniques will
improve performance by a factor of S, * S,; we assume that the
speedup techniques are uncorrelated.

In some cases, this view of performance is correct. Speedup
techniques that are independent of the program, such as a
shortened cycle time or the addition of a cache, can be expected
to improve performance of all parts of a program equally,
resulting in multiplicative performance improvement when com-
bined. However, when techniques are considered that affect
different parts of the program in different ways, this view is no
longer valid. Suppose, for example, that the program under
consideration consists of two parts, each taking time Tl and T2
to execute. Suppose furthermore that parts 1 and 2 can be sped
up by factors of S, and S, using techniques A and B.
(Technique A leaves part 2 unaffected, while technique B
leaves part 1 unaffected.) If only one technique is employed, the
performance is limited by the part of the program that the
technique cannot improve. If both techniques are used, however,
then both parts of the program run faster, and the resulting
speedup can be substantially greater than the product of the
speedups taken separately. This behavior is shown graphically in
Fig. 7.

Suppose we have a program divided into two parts, each part
taking 4 hours. Suppose further that the first part can be run in

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS

SUPERhIULlVLICATIVE
PERFORMANCE

fJNOF’l7hflZED EXECWION

TECHNIQUE A TECHNIQUE B

T=5.S=1.60 T=5.S=1.60
TECHNIQUES A & B

I I

T=Z.S=4
(4 > 1.6 l I .6 = 2.56)

Fig. 7. A pictorial description of supermultiplicative performance

one fourth the time using technique A, and the second in one
fourth the time with technique B. If only technique A or B is
used, the program takes 5 hours to run, giving a speedup of 1.6.
If, however, both techniques are used, then the program takes
only 2 hours. This gives a speedup of 4, as contrasted with
1.6 x 1.6 = 2.56. In this example, the speedup techniques are
correlated; supermultiplicative interaction occurs.

This is exactly what happens with the ckt4 benchmark. Cer-
tain parts of the program can be sped up by using intelligent
backtracking, others by using AND-parallelism, and others by
using oe-parallelism. These techniques are correlated; by com-
bining them, each part of the problem is sped up, and supermul-
tiplicative performance improvement is observed. We propose a
better understanding of the correlation of Prolog performance
improvement techniques as a topic for future research.

F. More Realistic Performance Results
While the optimal results just presented are useful for under-

standing parallel Prolog, it is equally important to model the
effects of execution overhead. As we have said earlier, most
parallel execution models for Prolog are highly theoretical in
nature, and tend to ignore the costs of multiprocessing,

In fact, many aspects of execution overhead need to be taken
into account when modeling parallel systems. For one, process
creation time is always nonzero. Loading and saving process
context takes time, as does the implementation of a process
scheduling algorithm. Typically, parallelizing a logic program-
ming system introduces new operations that are required to
maintain the integrity of the system, such as searching a binding
window chain [lo] or waiting to see if other processes have
terminated [22]. These operations represent additional overhead
that must be taken into account if realistic performance measure-
ments are to be obtained.

To model the effects of these and other multiprocessing tasks,
we have added code to the PPP simulator that simulates the PPP
architecture executing these routines at the register transfer
level. Using information obtained from the existing PLM pro-
cessor [151, the time required to perform the various multipro-
cessing operations can be determined. For further details, the
reader is referred to [181.

The performance results of the PPP on the previous bench-
mark set, taking into account the effects of parallel processing
overhead, are shown in Tables VIII and IX.

1441

TABLE VIII
EXPECTED SPEEDUP OF BENCHMARKS (32 PROCESSORS, OVERHEAD INCLUDED)

1 Pm A 0 A0
1 divide IO 0.x5 x x
/ log10
I OPS8
I times IO
1 dir
[palm25
I qsd

x x x
135x x
ox.3 x x
2.5.3 x
I II 0.38 (1.45
I 65 0.38 0.41
I 01 17.33 (1.69
x x
-t (2.62 x

/ hanoi
I mumath

Y x
x :.xX x

, construcl~str
1 deep-bak
envir
map0
match-list

1 match-str

o.s7 6.75 I .4x
146 x x
7.0 I x x
6 90 x x
2.6’) 0.4x I.10
9 4.1 x x
x 0.4x x
530 x x
4 4.? x x

TABLE IX
DEGRADATION OF PERFORMANCE DUE TO OVERHEAD

DEGRADATION = 1 - (S,,,, /So,,)
(AN ENTRY OP 00* INDICATES A VALUE SLIGHTLY GREATER THAN 0)

I prog A 0 A0

I , dlwdc II)
1 log IO
I opsx
I ti!ncs IO

I d’! / palm25
I qstl

I grl’

, con6
1 hanoi
! mumath
1 queens
, horcsca
I 1 construct Ii-t
1 constIuct str
1 deep-h&
I envir
1 map0
/ match-list
I match str
I match nested
1 knight- -

str

1 compilrr
I bovcr

Lz?---.

.12 x x
x s x
.25 s Y
.Sh x Y
.os Y x
.02 .70 .hS
.os 60 .7l
.04 so .A9
Y Y I
x .75 x
Y x s
x .27 \
4.5 311 47
..?-2 x Y
I’) s \

.I9 x s

.24 x2 .70

.Ii x Y
s .?h x
.20 x x
I4 Y K

.Ih x x
x .I0 K
Ill)+ x \
I4 s x

.IY .4x .5x

I prug A 0 I .40 A1 01 .\()I I

)ckt4 .II .20 .OO 2.‘~ .I5 .2I .25 / A---

1442

performance vs #processors

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990

Carltor$/anRoy and PPP Compilers
16

I I

lineal

15
14
13
12

or...............<
0 2 4 6 8 101214161820222426283032

#pilxe.ssa Gprccesson
Fig. 8. Fig. 9.

TABLE X
SUPERMULTIPLICATIVE PERFORMANCE IN THE 13x4 BENCHMARK (OVERHEAD 32. A plot of the PPP and Carlton/VanRoy curves for the PLM

INCLUDED) compiler is shown in Fig. 9.

IA (I ’
product nctual spectlup ?b dill I We caution against a strict comparison, for two reasons. For

/ ‘.“’

one, Carlton and Van Roy employ a fixed number of processes
8 4x 8 56 I I .2.3 3 I “/i, per processor. No such restriction exists in the PPP simulator, in

1.42 8.48 12.04 15 24 26%
] 1.01 1.42 8 4X 12.16 21.64 7 7 ?‘”

which processors can pick up any available process in the
process table. Additionally, the program compiled by the PPP
parallel compiler is different from that used by Carlton and Van

I) Analysis: First, we note that the supermultiplicative per- Roy, which is too large for the PPP simulator. Nonetheless, the
formance improvements shown by the ckt4 benchmark remain shape of their performance curve is quite close to that of the
even when execution overhead is taken into account (Table X). PPP, as are their performance values. This provides extremely
The improvement over the product of individual speedups is as strong evidence of the
good or better than the ideal case. on a multiprocessor.

mance advantage to begin with, and is quickly overwhelmed by

Referring back to Table VIII, we see that for the benchmarks
that were compiled for shallow OR-parallelism, psd and palin25,

process creation and window management overhead.

performance dropped dramatically when overhead was modeled.
This is because shallow oe-parallelism offers a small perfor-

feasibility of fast compilation of Prolog

Referring back to Fig. 9, the principal interesting feature of

We also see that the overhead associated with AND-parallelism
is much less than that associated with oa-parallelism. This is as
expected. For one, the exploitation of oa-parallelism can lead to
an explosion in the number of processes created. In addition to
this, oa-processes must manage multiple binding environments.
These two factors increase execution overhead dramatically,
contributing to the poorer performance of OR-parallel bench-
marks.

2) Performance Versus # Processors: The benchmarks that
performed the best using AND-parallelism and OR-parallelism
were “compiler” and “query,” respectively, while the only
benchmark that made use of intelligent backtracking was “ckt4.”
The performance improvement of these benchmarks as a func-
tion of the number of processors, taking into account the effects
of execution overhead, is shown in Fig. 8.3

tion time is limited by the proc&sor(s) that must execute more
than one process (recall that “query” generates all solutions to

the query benchmark is the dramatic rise in performance at

its top level goal). When the number of available processors
matches the number of processes, performance improves dra-

P = 25 processors. This occurs because the benchmark creates

matically. This suggests that a knowledge of the number of
processors in the system will be helpful in the compilation of
parallel logic programs, so that the compiler can attempt to

25 processes. If fewer than 25 processors are available, execu-

match the number of processes to the number of processors.
The “ckt4” benchmark exhibits a performance improvement

greater than the number of processors, due to intelligent back-
tracking. The performance of this benchmark when the effects of
intelligent backtracking are removed is shown in Fig. 10.

This figure and Fig. 9 show pictorially what we have already
demonstrated quantitatively: intelligent backtracking can interact
supermultiplicatively with AND-parallelism and OR-parallelism to
produce improved performance.

The results for the compiler are shilar to those reported by IV. CONCLUSIONS
Carlton and Van Roy in [3]. In this paper, the authors report g
peak speedup of 6.2 for 11 processors. For the PPP, a speedup
of 7.6 was obtained with 11 processors, with a peak of 9.53 for

‘We use the term “performance improvement” instead of the more
customary term “speedup” due to the use of intelligent backtracking in the
ckt4 benchmark. Intelligent backtracking is an algorithm modification, so the
strict definition of speedup does not apply to the “ckt4” benchmark. For the
query and compiler benchmark, however, the results shown reoresent

We summarize the main conclusions of this paper below.

S-p&p.

A. The Effectiveness of Restricted AND-PW’a~k~iS??I

The results indicate that for small programs, like the symbolic
differentiation benchmarks, restricted AND-parallelism is not ef-
fective in improving performance; when execution overhead is
taken into account these programs ran no more than twice as
fast. Better results are obtained on large programs like the

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS 1443

32
speedup vs #processors

30
28

26

24

21

20

B 18
i 16

14
t: 12

10
8

6
4

2

0
0 2 4 6 8 101214161820222426283032

#pmessors
Fig. 10.

Boyer-Moore theorem prover and the Berkeley Prolog com-
piler.

It is difficult to develop a metric for the cost of parallelizing
an execution model. We propose the following definition: let the
optimal speedup of a benchmark be the speedup obtained on an
infinite number of processors with no parallel execution over-
head. Let the real speedup be the speedup obtained on an infinite
number of processors with execution overhead taken into ac-
count. The cost of parallelizing an execution model for a particu-
lar benchmark is then defined to be the ratio of the real speedup
to the optimal speedup, subtracted from one. Thus, an execution
model that requires little overhead when parallelized has cost
close to zero, while an execution model that requires large
amounts of overhead to support parallel execution has a cost
close to one. Note that this is just the derivation from optimality
measure reported in Table IX, averaged over the benchmark set.

Based on this definition, the results indicate that restricted
AND-parallelism in the PPP can be utilized at a cost of about
20% (see Table IX). Hermenegildo, in [22], estimates the cost
of restricted AND-parallelism and in his execution model, the
RAP-WAM, to be no greater than 14%. This figure is based on
simulation studies of two programs, both of which were written
solely to test the RAP-WAM model. Hermenegildo states quite
clearly that the purpose of simulation in his thesis was solely to
validate the model, and was not intended to be an exhaustive
study. Since the PPP supports on-parallelism in addition to
AND-parallelism, and since the results presented here are based
on studies of 25 preexisting Prolog programs, we believe that
the PPP compares favorably to the RAP-WAM.

We believe, however, that single-solution computation occurs
more often in Prolog programs, and will dominate as Prolog
becomes more and more widely used. More likely than not, the
user will not be interested in all possible chip designs, or all
proofs of a theorem, but instead will seek a single solution that
satisfies the constraints of the problem. For a single-solution

with the others showing factors of less than two.

ously, honoring the semantics of Prolog in an OR-parallel execu-
tion environment has the potential to severely inhibit perfor-
mance .

In an attempt to measure the degree of performance inhibition
caused by the semantics of sequential Prolog, four single-solu-
tion benchmarks were recompiled with a relaxed version of
solution ordering. This was achieved by adding a “quit” in-
struction in the code, so that when any stream of computation
executed it, even if other OR-siblings were still running, the
entire program terminated. The results of the original and modi-
fied versions of the benchmarks are shown in Table XI. (The
PAR column shows the original results, while the PAR* column
shows the results with relaxed semantics.)

We see in Table IX that AND-parallelism improves the perfor-
mance of the PLM compiler by a factor of ten, and speeds up the
Boyer-Moore theorem prover by a factor of seven. These are
significant performance improvements, on nontrivial, useful Pro-
log programs; we believe they should lay to rest any doubts
about the potential utility of restricted AND-parallelism.

B. OR-Parddism and the Semantics of Prolog
oa-parallelism comes at a higher cost than ANo-parallelism,

owing chiefly to the overhead of managing multiple binding
environments. Thus, it should be utilized more carefully. In
addition, the question of single-solution versus all-solution com-
putation is extremely important.

We see that even a slight change in the semantics of the PPP
yields a dramatic performance improvement. We caution, how-
ever, against an improper interpretation of these figures. For
example, one cannot divide the PAR* column into the SEQ
column to obtain “speedup” figures comparable to those in
Table III. Such a calculation is only meaningful when comparing
two versions of the same algorithm, which is not the case with
the PAR and PAR* results. Nonetheless, it seems evident that
for single-solution computation, oa-parallelism is not likely to
yield significant performance improvement unless the semantics
of sequential Prolog are relaxed. We note that this is true
regardless of the execution model used. All parallel execution
models that preserve the semantics of sequential Prolog have this
same problem: a solution to the original query may be found
before searches of the branches to its left have terminated. Our
results therefore indicate that for maximum potential perfor-
mance improvement, the semantics of sequential Prolog should
be discarded.

In spite of this conclusion, we feel the decision to adhere to
If all solutions to a problem are desired, then os-parallelism the semantics of Prolog for the duration of the experiment was a

becomes equivalent to AND-parallelism in the sense that all valid one. If the possibility exists to achieve significant perfor-
descendants of a node represent tasks that must be carried out. mance improvement without the design of a new language, then

TABLE XI
THE EFFECT OF PRESERVING THE SEMANTICS OF SEQUENTIAL PROLOG

/ NOIlMAIJZI:I~ l:XI:(‘l ’ I’ION ‘I’IMIX /
PA II +

Unlike single-solution computation, all processors perform use-
ful work, which leads to significant speedup. This is the case
with the query benchmark, which yielded a performance im-
provement of 17. So for all-solution computation, OR-parallelism
appears to be a useful technique to improve Prolog performance.

1444

such a possibility should be investigated. Indeed, the results
indicate that through the utilization of restricted AND-parallelism,
significant performance improvement of standard Prolog is
achievable. However, the results also clearly show that the
adherence to the semantics of sequential Prolog limit the utility
of oa-parallelism, and that for further improvements modifica-
tions to Prolog are needed.

C. Costs and Benefits of Process Creation
The most important result shown in Tables III, VIII, and IX is

the importance of cost/benefit analysis in parallel logic program-
ming. The decision of whether or not to execute a goal in
parallel must be made with regard to the costs and benefits of
parallel computation. Simple visual inspection of a program is
not sufficient. Many programs that at first glance contain the
potential for parallel computation actually run slower when the
costs of multiprocessing are taken into account. The actual costs
of parallel processing will depend on the particular execution
model under study, but we believe Tables III, VIII, and IX
dramatically show the importance of a detailed consideration of
the costs and benefits of parallel goal reduction in parallel logic
programming systems. The construction of a cost/benefit model
as an aid to compilation is proposed as a topic of future
research.

D. Supermultiplicative Behavior in Logic Programs
Finally, we note that at least one program exhibits supermulti-

plicative behavior when AND-parallelism, oa-parallelism, and
intelligent backtracking are combined. While we recognize that
this is only one example, there is every likelihood that other
programs not studied can exhibit similar behavior. This suggests
that the effects of various performance enhancing techniques on
logic programs should be considered in toto, and not in isola-
tion from each other. If the techniques used map properly onto
the bottlenecks of the problem, improvements greater than those
attributable to individual techniques may be observed.

V. FUTURE WORK

The results of our work suggest several areas for future
investigation. Since the decision of whether or not to execute a
goal in parallel should be made according to a cost/benefit
analysis, intelligent compilers should be developed for such a
task. Side effects in parallel logic programs present difficult
challenges that future research will have to address. We have
also seen that the shape of the execution tree is an important
factor in determining Prolog performance. This suggests that
source-to-source program transformation may be useful in creat-
ing more efficient parallel logic programs. Further work remains
to be done in analyzing the effect of memory system latency on
the performance of parallel logic programs; clearly the single-
cycle assumptions presented here should be modified to take into
account bank conflicts, cache coherency issues, and so forth.
Finally, we have already noted the possibility of supermultiplica-
tive behavior in parallel logic programs. We believe this area
merits considerable further study.

ACKNOWLEDMENT

B. Fagin would like to thank his thesis readers, A. Despain,
Y. Patt, and R. Solovay for their time and valuable comments.
He is also grateful to the reviewers for their careful and con-
structive criticism. Both authors have benefited from interaction
with Dr. V. P. Srini, Dr. T. Dobry, Dr. W.-M. Hwu, and Dr.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990

W. Citrin, and the members of the Aquarius Research Group: P.
Bitar, B. Bush, M. Carlton, C. Chen, R. David, J. Gee, B.
Holmer, R. McGeer, S. Melvin, T. Nguyen, A. Singhal, M.
Shebanow, J. Swensen, J. Tam, H. Touati, J. Wilson, and R.
Yung.

l11

VI

131

141

151

161

l71

l81

191

t101

1111

ll21

1131

t141
r151

1161

1171

l181

1191

1201

t211
1221

t231

1241

REFERENCES

L. Bit, “A data-driven model for parallel interpretation of logic
moerams.” in Proc. Int. Conf. Fifth Generation Comout.
‘sys?., 1984, pp. 517-523. ” ”
P. Borgwardt, “Parallel Prolog stack segments on shared-mem-
ory multiprocessors,” in Proc. 1984 Symp. Logic Program-
ming, Feb. 1984, pp. 2-11.
M. Carlton and P.-V. Roy, “A distributed Prolog system with
ANo-narallelism,” in Proc. Hawaii Int. Conf. Svst. Sci. ‘88.
Hondlulu, Hawaii, Jan. 1988, submitted for publication.
J. H. Chang and A. M. Despain, “Semi-intelligent backtracking
of Prolog based on a static data dependency analysis,” in Proc.
Third Znt. Logic Programming Conf., 1985.
A. Ciepielewski and S. Haridi, “A formal model for on-parallel
execution of logic programs,” in Proc. Inform. Processing
‘83, 1983, pp. 299-305.
A. Ciepielewski and B. Hausman, “Performance evaluation of a
storage model for oa-parallel execution of logic languages,” in
Proc. 3rd IEEE Symp. Logic Programming, Salt Lake City,
UT, 1986, pp. 246-257.
W. Citrin, “Parallel unification scheduling in Prolog,” Ph.D.
dissertation, Dec. 1986.
W. F. Clocksin and C. F. Mellish, Programming in Prolog.
New York: Springer-Verlag, 1981.
J. S. Conery, “The AND/OR model for parallel interpretation of
logic programs, ” Dep. Inform. Comput. Sci., Univ. of Califor-
nia, Irvine, 1983.
J. Crammond, “A comparative study of unification algorithms
for on-parallel execution of logic languages,” IEEE Trans.
Comput., vol. C-34, pp. 911-917, Oct. 1985.
D. DeGroot, “Restricted AND-parallelism,” in Proc. Znt. Cony.
Fifth Generation Comput. Syst., 1984, pp. 471-478.
P. Dembinski and J. Maluszynski, “AND-parallelism with intelli-
gent backtracking for annotated logic programs,” in Proc. 1985
Symp. Logic Programming, July 1985, pp. 29-38.
J. B. Dennis and K. S. Weng, “An abstract implementation for
concurrent computation with streams,” in Proc. 1979 Znt. Cony.
Parallel Processing, Aug. 1979, pp. 35-45.
T. Dobry, PLM Simulator Reference Manual, 1985.
-, “A high performance architecture for Prolog,” Univ. of
California, Berkeley, CA, Rep. UCB/Comput. Sci. Dept.
871352, May 1987.
C. Dwork, P. C. Kanellakis, and J. C. Mitchell, “On the
seauential nature of unification.” J. Lonic Pronramminp 1.
June 1984, pp. 35-50.
B. Fagin and T. Dobrv. “The Berkelev PLM instruction set: An <
instruZion set for Prolog,” Cornput.- Sci. Division, Univ. of
California, Berkeley, Sept. 1985. Res. Rep. UCB/Comput. Sci.
Dept. 86/257.
B. S. Fagin, “A parallel execution model for Prolog,” Comput.
Sci. Division, Univ. of California, Berkeley, CA, Rep.
UCB/Computer Science Dept. 87/380, Nov. 1987.
- “Performance studies of a parallel Prolog architecture,” in
Pro;. 14th Int. Symp. Comput. Architecture, Pittsburgh, PA,
June 1987, pp. 108-116.
R. Hasegawa and M. Amamiya, “Parallel execution of logic
programs based on dataflow concept,” in Proc. Int. Conf.
Fifth Generation Comput. Syst., 1984, pp. 507-516.
P. Henderson, Functional Programming, 1980.
M. V. Hermenegildo, “An abstract machine based execution
model for computer architecture design and efficient implementa-
tion of logic programs in parallel,” Dep. Comput. Sci., Univ.
Texas at Austin, Austin, TX, Aug. 1986.
K. Hwang, J. Ghosh, and R. Chowkwanyum, “Computer archi-
tectures for artificial intelligence processing,” IEEE Cornput.
Msg., vol. 20, pp. 19-27, Jan. 1987.
P. P. Li and A. J. Martin, “The Sync model: A parallel
execution method for logic programming,” in Proc. 3rd IEEE
Symp. Logic Programming, Salt Lake City, UT, 1986, pp.
223-234.

FAGIN AND DESPAIN: PARALLEL PROLOG PROGRAMS

[25] G. Lindstrom, “on-parallelism on applicative architectures,” in
Proc. Second Int. Logic Programming Conf., July 1984, pp.
159- 170.

[26] T. Moto-Oka, “The architecture of a parallel inference
engine-PIE,” in Proc. Int. Conf. Fifth Generation Comput.
Syst., 1984, pp. 479-488.

[27] L. Sterling and E. Shapiro, The Art of Prolog. Cambridge,
MA: MIT Press. 1986.

[28] J. Syre and H. Westphal, “A review of parallel models for logic
programming languages,” ECRC Tech. Rep. CA-07, June 1985.

Barry S. Fagin (S’8&M’87) received the A.B.
degree in engineering from Brown University,
Providence, RI, in 1982, and the M.S. and
Ph.D. degrees in computer science from the
University of California, Berkeley, in 1984 and
1987.

While at Berkeley, he was a principal con-
tributor to the Aquarius project, an investigation
into high performance symbolic computing.
Currently, he is an Assistant Professor of com-
puter engineering at the Thayer School of Engi-

College, Hanover, NH. His research interests in-

1445

chide computer architecture, special purpose computer design, and
parallel symbolic computing.

Dr. Faain is a member of the Association for Computing Machinery,

Alvin M. Despain (S’58-M’65) received the
B.S., M.S., and Ph.D. degrees in 1960, 1964,
and 1966, all from the University of Utah, Salt
Lake City.

He has held faculty positions at Utah State
University, Stanford University, and the Uni-
versity of California at Berkeley. His research
interests include signal processing, multiproces-
sor architecture, computer architecture, and high
performance computing; he is the author of over
60 papers in these fields. He has been a consul-

tant to the electronics and computer industry for over 20 years. While at
Berkeley, he was the principal investigator for the Aquarius research
project. He is now a Professor of electrical engineering and computer
science at the University of Southern California.

Dr. Despain is a member of Tau Beta Pi, Sigma Xi, Sigma Pi Sigma,
Eta Kappa Nu, AAUP, ACM, and AAAI. He is a panel member of
JASON, the SD10 Advisory Committee, and the ISAT working group
for DARPA/ISTO.

