Copyright (1995 Institute of Electrical and Electronics Engineers. Reprinted from IEEE Transactions on Computers, vol. 44 no. 12, pp 1383-1393, Dec 1995.

This material is used here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any products or services of the author or supporting institution. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE. Such permission can be obtained by sending a blank email message to info.pub.permission@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.�

The Performance of Counter and

Correlation-Based Schemes

for Branch Target Buffers

Barry Fagin

Amit Mital†

Department of Computer Science

U.S. Air Force Academy

fagin@cs.usafa.af.mil

ABSTRACT

Branch target buffers, or BTBs, can be used to improve CPU performance by maintaining target and history information of previously executed branches. We present trace-driven simulation results comparing counter-based and correlation-based prediction schemes for a variety of branch target buffer sizes. We report relative performance estimates to show both the relative merits of various techniques and their effects on performance for current microprocessors. Our results indicate that counter-based schemes outperform correlation-based schemes for small buffers, but that the opposite becomes true as buffer size increases. This is due to the importance of hit ratio over prediction success in branch target buffer design. The transition point between counter and correlation-based schemes is dependent on the size of the working set of dynamic branches for a given collection of benchmark programs.

Our results also show that for small BTBs, hit ratio and hence performance decrease as the number of correlation bits increase. This is due to non-random distribution of correlation vectors causing increased collisions for BTB locations. Only when a BTB becomes large enough to capture the working set of a program's branch and correlation vector references do the expected benefits of correlation-based schemes manifest themselves.

INDEX TERMS: branch correlation, branch prediction, branch target buffer, performance modeling, trace-driven simulation

†Now with Microsoft Corporation, Redmond WA.

�
1.0 Introduction

	Modern processors are increasingly relying on superscalar processing to obtain improved performance. This requires the ability to process multiple instructions concurrently. Such concurrency, if obtainable, leads to significantly improved performance, but only if barriers to concurrent instruction processing can be overcome.

	Factors such as control and data dependencies place a bound on the performance gain realizable from superscalar processing. Advances in compiler technology can help eliminate some of these dependencies, but they still constitute a major performance bottleneck. In a RISC processor, branches are the single most important barrier to achieving single cycle instruction execution [1]. Performance losses due to branches can easily result in the loss of the advantages of pipelining. These performance losses are particularly severe for superscalar machines.

	To keep the multiple functional units in a superscalar processor utilized efficiently, speculative execution is often relied upon. Speculative execution is the introduction of an instruction stream into the processor pipeline before it is known to be correct. Speculative execution is necessary because several cycles may elapse before the branch is resolved, and the cost of these cycles are all the instructions that may have potentially been executed. All branch instructions require target address calculation, which may require additional cycles, while conditional branches require additional inspection of machine state.

	The decision on which portion of the instruction stream to supply to the CPU is based on the outcome of a branch prediction: a decision made on the direction of a branch before the outcome of the branch is known. If the speculatively executed stream is incorrect, all the work performed on that instruction stream must be discarded. Speculative execution may also cause page faults and/or protection violations, events with a high processing cost if associated with an incorrect instruction stream. For all these reasons, accurate branch prediction is crucial for the success of a superscalar processor.

	Both static and dynamic techniques are available for dealing with branches. Static techniques can be effective, and are used in existing processors, but are limited in the amount of program behavior they can capture. Dynamic techniques can improve performance when combined with static techniques, at the cost of increased hardware complexity. The nature of the cost/performance tradeoff for dynamic branch techniques is one of the topics of this paper.

	Dynamic branch prediction techniques take information derived from the branch instruction as input, and produce two outputs: the expected direction of the branch and the branch target. The predicted branch direction is signified by a bit (taken/not taken), while the target is the address of the next instruction in the predicted path�. The portion of hardware that transforms branches into predictions and targets is known as a branch target buffer, or BTB. The relationship of the BTB to the CPU is shown in Figure 1. We will analyze this relationship in more detail shortly.

	Our study examines the interaction between BTBs and two dynamic techniques for branch prediction: counter-based schemes, which predict the outcome of a branch by examining its most recent outcomes, and correlation-based schemes, which predict the outcome of a branch by examining the most recent outcomes of other branches. Our work is carried out using simulation studies of the TFP processor�, a superscalar implementation of the MIPS architecture. Our results are based on simulated execution of several programs in the SPEC benchmark suite. Performance data is normalized to a baseline processor configuration, and plotted for a variety of strategies and buffer sizes. Section 2 of this paper discusses previous work. Section 3 describes how our results were obtained. Section 4 explains the different branch prediction techniques, while section 5 presents our results. Section 6 discusses our conclusions and plans for future work.

2.0 Previous Work

	Static techniques have been examined extensively in the literature. Hennessy and McFarling report an average of 63% dynamically taken branches [1], suggesting a 63% accuracy rate for a simple "predict taken" strategy. J. E. Smith [6] has noted a correlation between branch direction and opcodes, reporting an 86.7% accuracy for an opcode-based prediction scheme. Smith also measured the effects of a "predict negative taken" strategy, reporting 76.5% prediction accuracy. Patterson and Hennessy describe the effects of stalling and static prediction techniques in [7].

	Dynamic techniques have been studied more recently. Hwu et. al. [8] compare the performance of a simple BTB, a counter-based BTB, and a profiling-based BTB for branch prediction. Their results indicate an average prediction accuracy of 91.5%, 92.4%, and 93.5% respectively. Bray and Flynn [2] use trace driven simulation of the MIPS R2000/R3000 architecture to compare the performance of isolated BTBs versus BTBs combined with instruction caches. Their studies indicate that for combined schemes with instruction caches larger than 4K, line size is more important than cache size; the performance of a BTB with 64 entries is roughly equivalent to that of an instruction cache with a line size of 8 instructions. They also examine the performance of counter-based schemes. Yeh and Patt [9] discuss multiple implementations of "two level" branch prediction, in which information derived from the last N branches is used to index is used to index information for the last M occurrences of the specific taken/not taken pattern of these branches. Different implementations of this scheme report a 97% prediction accuracy, although hardware costs are high due to the table space required. All these schemes report prediction accuracy only; no performance estimates are provided.

	Pan et. al. [10] propose a simpler dynamic technique with modest additional cost: the incorporation of the taken/not taken pattern of the last N branches into the addressing function of the BTB. This correlation-based technique exploits the dependence between the direction a branch will take and the directions taken by the branches before it. Pan et. al. compare the performance of a counter-based scheme with various correlation-based schemes using trace driven simulation on the RS/6000 architecture. Adding 8 bits of correlation to a 2-bit counter scheme yields prediction accuracies from 94% to 97%.

	Perleberg and Smith present trace-driven performance models of branch target buffers in [11], in which they examine the performance contributions of various BTB fields based on 32 program traces from four processors, including the MIPS processor used in this study. Prediction rates were also analyzed as a function of the number of history bits for each individual branch, noting that after four bit history prediction the increase in prediction accuracy drops off significantly. Counter-based prediction, correlation-based prediction, and the effects of correlation vectors were not examined.

	In our work, we are concerned with modeling performance. Studies that focus exclusively on prediction ratio provide little insight into its relationship to performance: an increase in prediction success cannot be translated into a quantifiable performance improvement in the absence of a concrete machine model. Our work is based on trace-driven cycle counts of an existing microprocessor architecture, permitting us to provide concrete estimates of performance. We note the potential inadequacies of our model in the concluding section of the paper.

	Our experiments have also yielded insight into the various components of branch prediction accuracy. We note that in order for a taken branch to be predicted successfully, it must be both associated with the correct target and present in the buffer. Correlation-based techniques, due to both improved localization of branch history and an increase in the number of BTB addresses, can improve the likelihood of the former while decreasing the probability of the latter. Their performance effects are therefore uncertain, and depend on the region of the BTB parameter space under consideration. We offer an explanation of this phenomenon in light of our experimental data.

3.0 Methodology

	Our experimental analysis began with the SPEC92 benchmark suite [12]. These benchmarks have received extensive experimental study (see for example [13]). We chose the programs described in Table 1. Compress, espresso, eqntott, and gcc are integer benchmarks, written in C, while ear, fpppp, tomcatv, and doduc are floating point codes written in Fortran.

	An overview of our data collection process is shown in Figure 2. First, the programs were compiled using the optimization levels and flags specified in the SPEC Makefile. The compiled code was then processed using pixie, a tracing utility available on MIPS-based platforms [14]. Pixie modifies an existing executable to produce a new executable that emits traces to track its behavior. At this stage of modeling, pixie was run with the -idtrace option, which causes the modified executable to trace both instruction and data references. Instruction opcodes are recovered through post-processing of the modified executable.

	Our strategy was to obtain a base cycle count for all operations not affected by branch prediction, and then calculate the cycle counts associated with various branch prediction strategies. We first obtained a base cycle count by running the modified object file through sim, the TFP processor simulator obtained on loan from Silicon Graphics Incorporated. To calculate a baseline performance figure, sim was configured to record no costs for BTB access, so that a misprediction would not incur any cycle penalties. The total cycle count obtained under these circumstances was the base cycle count for the benchmark. The platform employed was an IRIS Indigo workstation.

	Next, pixie was again run on the compiled executable, this time with the -itrace option only (since data references do not affect branch prediction). The resulting executable was again run on an Indigo to produce a trace, which was then preprocessed by custom tools to extract all branching information. The resulting file was then processed by a BTB simulator to produce prediction statistics for a variety of BTB sizes and strategies.

	For each BTB configuration and strategy, the number of mispredicted branches was calculated by multiplying the misprediction ratio by the dynamic branch count. This number was then multiplied by a branch misprediction penalty of 3.0 to obtain a branch cycle count. Finally, the branch cycle count was added to the base cycle count to give the total number of cycles for a given benchmark, BTB size, and branch prediction strategy. Our choice of 3 cycles as the misprediction penalty for the MIPS processor is based on the number of cycles required for the instruction fetch stage of the pipeline to fetch the correct instruction after a misprediction. Different machines will have different branch penalties, but the relative performance of various strategies as reported by this measure will not change. We note that the RS/6000 also has a 3 cycle penalty for a misprediction [10].

	All data points are for single process traces; context switches were not simulated. Current studies indicate a degradation of less than 1% in BTB prediction accuracy due to context switching for both 2-level adaptive prediction [9] and per-branch history prediction [11] for context switches of at least 500,000 instructions. Since our data are based on address traces, branches that appear in the object file but are never executed are not accounted for.

	Our simulation database currently contains over 2500 data points, corresponding to performance calculations for various combinations of BTB sizes, prediction strategies, and benchmarks. This paper contains the summarized results for counter and history based schemes using direct mapped BTBs. For more information on associative BTBs and other details of our study, the reader is referred to [15].

�
4.0 Techniques

	We have examined two basic types of branch prediction strategies: counter-based schemes, and correlation-based schemes. We have also examined the effects of modifying history-based schemes with additional static strategies. These are described in this section. We begin, however, with a discussion of BTB behavior, to place each technique in the proper context.

4.1 Branch Target Buffer Behavior

	Our conceptual model of a BTB was shown in Figure 1. It is accessed with an address, derived in some way from the branch to be predicted, and returns a prediction and a target. A prediction is correct if the address returned by the BTB is identical to the address branched to by the dynamic execution stream.

	We note that the correct prediction rate of the BTB is not the same as the hit rate. It is possible to produce correct predictions on a BTB miss, just as it is possible to produce incorrect predictions on a BTB hit. For example, when the BTB is first accessed, if the branch is not in the buffer then it does no harm to predict that the branch is not taken, supplying the CPU with the address of the next instruction. In this case, if the branch is not taken, the prediction was correct. Similarly, a branch may hit in the BTB but generate an incorrect prediction.

	In general, a BTB access corresponds to several possible events. The predicted branch may or may not Hit in the buffer, which we indicate with a boolean variable H. The Prediction may be either taken or not taken, indicated with a boolean variable P. The outcome of the Branch may be either taken or not taken, corresponding to a boolean variable B. Finally, the provided Target from the BTB may or may not be identical to the target of the dynamic instruction stream, which we indicate with a boolean variable T. Correct predictions are, of course, exactly those cases for which T=1. A deeper understanding into BTB behavior, however, is possible by examining all combinations. This is shown in Table 2.

	Table 2 has some interesting properties. First, we see that HPBT = x000 is logically impossible, since a correctly predicted not taken branch will always have the correct target: the fall-through supplied by the buffer. HPBT = x011 and 1101 indicate the execution of a branch with identical target and fall-through values. We assume such branches are never generated by the compiler. Finally, HPBT = 01xx is impossible since we assume a prediction of not taken on a buffer miss.

	Case 1110 is interesting in that it implies both a BTB hit and a correct prediction of the branch, but an incorrect target supplied to the CPU. This is referred to as the moving target problem. The moving target problem is caused by control transfer instructions with target addresses that are not known at compile time, such as jump instructions with register-based values. These types of instructions are most commonly used for subroutine returns, although they can also be used for dynamic subroutine calling. Kaeli and Emma identify this problem in [16], and discuss how to reduce it through the use of a call/return stack.

	Correct predictions are therefore obtained during one of three cases: 1) a miss followed by a not taken branch, 2) a hit followed by a correctly predicted not taken branch, or 3) a hit followed by a correctly predicted taken branch supplied with the correct target. Note that in case 2, the branch is occupying buffer space needlessly, since a miss for a not taken branch produces the same outcome. We examine the effect of removing not taken branches from the buffer in section 5.0.

4.2 Counter-Based Techniques

	Counter-based techniques use an n-bit counter associated with each branch in the program. This counter records the history of previous instances of its branch. A typical strategy is to increment the counter if the branch is taken, up to its maximum value, and to decrement it if the branch is not taken, down to zero. The predicted direction of the branch is made by an inspection of the counter value: if it is greater than some threshold value, typically the midpoint of the counter, a "taken" prediction is made, otherwise a "not taken" prediction is made. This is intended to reflect locality of individual branch histories, since branches will tend to take the direction taken in the recent past. A pictorial view of this strategy is shown in Figure 3.

	Counter-based strategies have been examined in many studies, including those cited in Section 2.0. Our simulations examine only 1 and 2-bit counters, noting that larger counters have been shown to offer minuscule performance improvements and, in some cases, can actually decrease performance [6]. Accordingly, we believe that no useful software branch structure will ever take advantage of more than 2-bit counters for branch prediction.

4.3 Correlation-Based Techniques

	One disadvantage of the counter-based scheme is that it incorporates information for each branch independently. The direction that a branch will take, however, is also influenced by branches taken before it. To exploit this relationship, correlation-based schemes use branch histories of many branches to predict the outcome of the current branch.

	For our simulation studies, we use the correlation scheme of Pan et. al.[10]. An overview of this scheme is shown in Figure 4. The branch histories of the last N executed branches are preserved in a shift register. The contents of this register are appended to the lower bits of the branch address, with the resulting vector used to access the BTB. N is set by the experimenter, while the number of bits obtained from the branch address is determined by the number of entries in the BTB. Figure 4 shows an example with N=4 and a BTB of 4K entries. Our data represent simulations for N=2, 4, 8, and 12.

	Notice that for a given buffer size, there is a tradeoff between the number of branch address bits used to access the buffer and the number of correlation bits. Using more branch address bits permits more individual branches to be retained in the buffer, at a cost of reduced prediction accuracy. Using more correlation bits permits branches in the buffer to be predicted more accurately, at a cost of displacing individual branches. The performance consequences depend on the number of entries in the buffer, as we will see shortly.

4.4 Additional Techniques

	Since branches that are predicted not taken have the fall through as the target, their prediction is the same regardless of whether the branch hits in the BTB. Effective buffer size can be increased, therefore, by caching only branches that are predicted to be taken. We refer to this as the nrepl strategy, since not taken branches are replaced in the buffer. For set associative buffers, this can be effected by marking entries for replacement when their prediction status changes from taken to not taken. For direct mapped BTBs, branches are written to the buffer only if they are taken.

	We also report measurements indicating the effectiveness of supplementing counter-based strategies with predicting all negative branches as taken. We refer to this as the neg strategy. In this case, the prediction indicated by the counter is overridden for branches with negative displacements.

5.0 Results

	Our study investigates the relative performance advantages of possible enhancements to branch prediction in the TFP microprocessor. Accordingly, our results are normalized to the simulated execution time of the current TFP configuration: a combined branch/instruction cache with 1K entries and a 1-bit history prediction mechanism. Where aggregate data is indicated, the graphs that follow represent the arithmetic mean for each of the 8 programs in Table 1. Since our work compares the performance effects of the addition of different features to a normalized base architecture, and is not averaging benchmark execution times normalized to one of several possible reference machines, the use of the arithmetic mean is appropriate for our assumptions of an equally weighted workload. The horizontal axis represents the number of entries in the BTB, while the vertical axis represents performance relative to the base processor configuration. The results shown here are for direct mapped BTBs only. For a detailed analysis of the effects of associativity, the reader is referred to [15].

	Our data plot relative execution time for each benchmark as a function of the number of BTB entries for a total of ten strategies:

	1) 1-bit counter (h1)�

	2) 2-bit counter (h2)

	3) h1 + caching predict taken branches only (h1nrepl)

	4) h2 + caching predict taken branches only (h2nrepl)

	5) h1 + predicting negative branches as taken (h1neg)

	6) h2 + predicting negative branches as taken (h2neg)

	7) 2-bit correlation (corr2)

	8) 4-bit correlation (corr4)

	9) 8-bit correlation (corr8)

	10) 12-bit correlation (corr12)

We first consider the counter and correlation schemes separately, and then compare their performance.

5.1 Counter-Based Performance

	The relative performance for each benchmark using a single prediction bit is shown in Figure 5. These values represent the baseline data set: individual relative performance using the simplest branch prediction strategy. We see that the four floating point benchmarks, compress, ear, doduc, and tomcatv, all show similar behavior. Increasing the size of the branch target buffer provides modest improvement up to about 128 entries, with further increases having negligible effect. The eqntott benchmark, due to its large number of dynamic branches, performs extremely poorly for small BTB sizes, ramping down quickly once the BTB is large enough to capture the program's dynamic branch working set. The gcc benchmark, due to its large size, requires an exceptionally large BTB to achieve performance comparable to the other benchmarks. We shall have more to say about gcc in a later section.

	With certain exceptions we will point out later, none of the points we make are challenged by an examination of individual benchmarks instead of an average. Therefore, to conserve space and improve readability, most of the graphs that follow will represent average data from the benchmark set.

	The effect of going from 1 to 2 counter bits is shown in Figure 6. In general, for small buffer sizes, the effects of a poor hit ratio outweigh the differences between doubling the number of counter bits. Even for larger buffers, however, adding another bit adds only about 1.3% in performance. Since going from 1 bit to 2 implies going from a flip flop to a counter-based FSM with an accompanying increase in control logic, adding another counter bit to the TFP branch target buffer is not desirable. The graph flattens out for larger sizes, indicating that once the buffer is large enough to hold the active set of dynamic branches for the program, further increases in size are ineffective.

	If the counter-based schemes are modified to store only branches that are predicted to be taken, we obtain Figure 7. For small buffers, there is a modest improvement of about 1% in execution time. For large buffers there is no measurable difference. Again, once the buffer becomes large enough to handle the program's dynamic branches, policies that affect replacement are no longer an issue. If the SPEC benchmarks truly represent typical programs, then our data indicate that BTBs of 512 entries or larger make caching only predicted taken branches unnecessary. This will change if programs evolve to produce significantly larger sets of dynamic branches, or if branch penalties increase significantly.

	Data for combining counters with predicting negative branches as taken are shown in Figure 8. Qualitatively, this graph exhibits the opposite behavior of Figure 7. Since the neg strategy affects only prediction success, it has little effect for small buffers where hit ratio dominates. Its effects are observable only for larger buffers, where success rates become more important. Even for a 32K entry buffer, however, the estimated performance improvement is less than 1%.

	What is most interesting about Figure 8 is the different effect on the number of history bits: predicting negative branches as taken improves the performance of 1-bit counter schemes, but degrades it for 2-bit schemes. This is easier seen in the highlighted region of Figure 8, shown in Figure 8a. We believe this behavior can best be explained as follows. Consider the behavior of a negative branch at the end of a loop using a 1-bit counter prediction scheme. We will refer to the execution of a loop as the complete chain of events from loop entrance to exit. Thus a single execution of a loop corresponds to one or more iterations.

	Consider the first complete execution. Assuming the branch prediction counter is initialized to 1, all executions of the branch within the loop except the last will be predicted correctly. Loop exit will reset the counter to 0, causing a misprediction when the loop is entered again. Thus if the loop is executed N times, there will be 2N-1 mispredictions. If the neg strategy is adopted, the misprediction associated with loop entrance is avoided, and the number of mispredictions is reduced to N.

	Now consider the same events with a 2-bit counter scheme. In this case, the first loop exit will still be mispredicted, but the counter will only be decremented to 2. When the loop is entered again, the first and succeeding executions of the branch will be correctly predicted, regardless of whether the neg strategy is adopted. Thus for N executions of the loop, there will be N mispredictions: adding the neg strategy to 2-bit counters has no effect.

	We see then that the neg strategy affects loop structures differently for 1 and 2-bit schemes. For non-loop branches, however, the effect is symmetrical. This is shown in Table 3. Mispredictions due to taken branches are reduced by equal amounts for both the 1 and 2-bit schemes by the addition of the neg strategy, while mispredictions due to not taken branches are increased equally. The difference in prediction behavior between loop and non-loop structures explains how the neg strategy can improve the performance of 1-bit schemes while reducing that of 2-bit ones. If a sufficiently large portion of negative branches in a program are associated with loops, and if a sufficiently large portion of non-loop branches are correctly predicted as not taken, then the neg strategy could increase the mispredictions for non-loop, not taken branches in both cases while reducing the mispredictions for loop branches in the 1-bit case by a much larger amount.

5.2 Correlation-Based Performance

	The performance of four correlation-based schemes is shown in Figure 9. Data are shown for N=2, 4, 8, and 12 correlation bits. This figure shows an interesting relationship between N (the number of correlation bits), BTB size, and performance. For small BTBs, performance decreases as correlation bits are added. As BTB size increases, however, this relationship reverses itself. As curves for smaller values of N flatten out, the curves for larger values continue to improve, until for the largest BTBs simulated performance increases with N.

	The reason for this behavior is shown in Figure 10, which graphs BTB hit ratio as a function of N for N=2, 4, 8, and 12. For small BTB sizes, hit ratio is both poor and inversely proportional to N. As the BTB increases, so does hit ratio. Once the values become sufficiently close to one another, the contributions to performance of increased prediction accuracy associated with increasing N are able to appear. These are masked for smaller sizes, since the accurate prediction of most branches is not possible if they are not in the BTB to begin with.

	To investigate the reason for the reduction in hit ratio with increasing N for small cache size, we proceed as follows. Since the branch references for all trace runs are identical, any difference must be due to correlation vectors. Thus correlation schemes contribute to reduced hit ratio through collisions to BTB locations. If branch address bits are randomly distributed, then the reduction in hit ratio observed when branch bits are combined with correlation vectors implies that correlation vectors are not uniformly distributed.

	To test this hypothesis, we modified our simulator to obtain the data shown in Figure 11. This figure shows the average cumulative distribution of correlation vectors both with and without the large benchmark gcc. The x axis shows the fraction of the total number of vectors, while the y axis shows the number of vectors responsible for a given fraction. Note that the y axis is logarithmic, and that the graphs are close to linear. For an average of 3530 vectors, 24 account for 20% of the total. Increasing the percentage of the total by an additional 10% requires an approximate doubling of the number of vectors.

	The non-uniform distribution of branch history vectors is not surprising, given that most branches are taken and that most branches tend towards one direction. Correlation vectors with large numbers of 1's should occur more often than others, while branches with equal numbers of 0's and 1's should be less common. Evidence of this is shown in Figure 12, which plots the binomial and observed distribution of correlation vectors as a function of the number of 1's they contain. We see that the distribution is strongly non-uniform, with vectors that contain large numbers of 1's disproportionately represented. The ten most common 15-bit correlation vectors for each benchmark are shown in Table 4. As expected, vectors with large numbers of 1's predominate.

	Overall, our data indicate that correlation schemes reduce the performance of small BTBs. Collisions due to correlation vector distribution decrease the hit ratio below the point where improvements in prediction accuracy make a difference. This causes prediction accuracy to decrease as N increases. However, as buffers become larger, hit ratio increases. Once the hit ratio becomes large enough, improved prediction accuracy is then observed that increases with N. The value at which this change takes place depends on N. The larger the number of correlation bits, the larger the set of branch history and address pairs that constitute the working set of the program's BTB references, and the larger a buffer must be to accommodate it.

5.3 Counter and Correlation-Based Comparison

	The relative performance of counter and correlation-based schemes are shown in Figure 13. Both counter and correlation-based schemes have similar shapes: steep gradients followed by a more level decline. For small BTBs, counter-based schemes are superior due to the increased importance of hit ratio. The improved prediction success of correlation-based schemes is not observable until the branches it can successfully predict appear in the buffer. This occurs as BTB size increases. Once an acceptably high hit ratio is obtained, prediction accuracy becomes more important.

	The data in general suggest that hit ratio is the primary determinant of BTB performance, with prediction success as secondary factor. Small BTBs have a lower hit ratio, masking out any effects of superior prediction strategy. As buffer size increases, hit ratio increases, eventually leveling out to the point where the secondary effects of prediction strategy may be observed.

5.4 Results For Individual Benchmarks

	Although the data for each benchmark tend to reflect the trends indicated in the previous figures, the behavior of certain programs warrants separate mention. For example, the gcc benchmark has a significantly larger number of unique dynamic branches than all the other programs. The performance of the gcc benchmark for all counter and correlation-based schemes is shown in Figure 14.

	None of the curves for gcc exhibit the steep slope and leveling out of the other benchmarks. Its large number of unique dynamic branches suggest a much larger working set, and hence a larger BTB is required to capture it. This is consistent with the analysis of Hill and Pnevmatikatos [13], who reported significantly higher instruction and data cache miss ratios for the gcc benchmark than for other programs in the SPEC benchmark suite.

	In our discussion of the behavior of correlation-based techniques, we assumed that an increase in the number of correlation bits increases the prediction success rate. This may not be the case for benchmarks with little correlation between branches. For example, consider the performance of correlation-based techniques for the ear benchmark, shown in Figure 15.

	As with the aggregated data, increasing N increases the buffer size required to obtain a significantly high hit ratio. However, the necessary increase in size is much larger for ear than for other benchmarks. Additionally, performance is essentially independent of N at large buffer sizes, suggesting that there is very little correlation between branches in this benchmark. This confirms the existence of realistic programs that exhibit very low dynamic branch correlation.

	For an analysis of other individual benchmarks, the reader is referred to [15].

5.5 Cost of Prediction Techniques

	Table 5 summarizes the architectural costs of the techniques we have examined. The benefits will, of course, depend on the branch penalty for the architecture under study. For the TFP architecture and a 3-cycle branch penalty, the costs of employing 2-bit counters for branch prediction outweigh the benefits. The resources involved in correlation-based schemes are more modest, and may warrant inclusion as branch penalties become more severe.

6.0 Conclusions and Future Work

	Our results indicate that the expected performance gain from adding another bit to a 1-bit branch predictor will be modest, and that the associated resources are more profitably spent elsewhere. Predicting negative branches as taken can improve the performance of 1-bit schemes, but due to the asymmetrical treatment of loops in the 2-bit case the neg strategy can actually increase mispredictions for 2-bit counters. Entering only branches that are predicted to be taken can improve the performance of small buffers, but is ineffective once a sufficiently high hit ratio is obtained.

	Correlation-based schemes do indeed exhibit superior performance to counter-based schemes, but only for sufficiently large buffers. For small buffers, performance is inversely proportional to the number of correlation bits. As the buffer size increases, correlation-based schemes begin to improve, until performance becomes directly proportional to N due to increased prediction success. This is due to the reduction in hit ratio caused by increasing N for small buffer sizes, caused by increased collisions for BTB entries due to non-random correlation vector distribution.

	All the data indicate that hit ratio is the primary factor in BTB performance, with prediction success as secondary. Counter-based schemes affect prediction strategy only, and as such their performance graphs scale directly with hit ratio. nrepl is effective for small buffers when hit ratio is crucial, but once a sufficiently high ratio is achieved its effects are no longer felt. Correlation-based schemes affect both hit ratio and prediction success. They perform worse for small buffers due to their increased working set size, but exceed counter-based schemes once a sufficiently high hit ratio is reached.

	The dividing line between the regions where hit ratio dominates and where prediction success dominates is determined by the size of a program's working dynamic branch set. For the SPEC benchmarks, the critical number of entries in a BTB is approximately 2K. Should programs change to generate an increasingly larger working set of dynamic branches, perhaps through increased compiler sophistication, new high level language constructs, or instruction set modification, larger BTBs will be required. Similarly, deliberately engineered compiler changes to reduce the working set branch size of programs could lead to smaller BTBs, freeing up chip area for other uses.

	We note that our performance model assumes a constant penalty for mispredictions, independent of prediction scheme and buffer size. This may not be true for many implementations. For example, counter-based prediction schemes require an update of the branch target buffer once the outcome of the branch is known. If the branch target buffer is consulted every instruction, the performance penalties could be severe. Even if the BTB is only consulted on branches, basic blocks of sufficiently small size could cause stalls due BTB access conflicts if prediction of the current branch conflicts with the prediction information update of a previous one�. Additionally, increasing the size of the BTB can increase access time, potentially affecting system cycle time or pipeline depth�, while instruction cache misses, TLB misses, and page faults will also contribute to non-constant misprediction penalties. See Cragon [17] for a discussion of these and other issues. Future work should examine these effects.

	For the assumptions we have made, the expected performance consequences of the strategies we have examined are relatively modest. Our data indicate that elaborate branch prediction strategies for existing microprocessors are not called for; most of the reduction in branch penalties can be achieved through a reasonably sized BTB. However, more elaborate strategies will become attractive as instruction level parallelism and the corresponding branch penalties increase. Amdahl's Law warns us of the perils of neglecting any portion of computation for too long. More importantly, the relative performance of each strategy remains unchanged as a function of branch penalty, so long as the branch penalty is constant. Thus our conclusions on the qualitative behavior and relative performance of each technique should generalize to a variety of architectures.

	We are currently investigating the issue of associativity in BTBs, and with it the placement of branch targets. Hill [18] has noted that for direct-mapped caches, the costs of a slightly reduced hit ratio are made up for by the benefits of reduced access time. For BTBs accessed with correlation-based addresses, however, this may not be true. If the distribution of correlation vectors is sufficiently non-uniform, the decline in hit ratio may be so severe that increased associativity is warranted. We intend to explore this possibility further.

	Many architectures incorporate a conditional move instruction, in which data is transferred between registers depending on the outcome of a conditional test. This type of instruction reduces the amount of dynamic branches in programs, and should be studied using the techniques describe here. The sensitivity of performance to branch penalty should also be examined. Our models currently assume a constant branch penalty, but machines that support out-of-order execution will have a non-constant branch penalty.

	We have only reported on the separate comparison of counter and correlation-based schemes. These schemes can be combined, as reported in [10] for selected values of N and BTB sizes. We propose to examine the effects of combining counters and correlation over a wide range of buffer sizes and associativities. The neg and nrepl strategies can also be added here; further research is required to see how they would interact with correlation-based schemes. Finally, none of the techniques described here address the moving target problem associated with subroutine returns and dynamic function calls. We intend to measure the frequency of mispredictions caused by moving targets, and examine the efficacy of the subroutine stack method of Kaeli and Emma [16] for a variety of buffer sizes and associativities.

7.0 Acknowledgments

	The authors gratefully acknowledge the assistance of Silicon Graphics Incorporated for their support of this project. Numerous individuals at SGI have rendered assistance, including Peter Hsu, Sam Leffler, Greg Shippen, Chris Rowen, Chandra Joshi, and Andrew Peebles. Part of this work was performed at the Thayer Rapid Prototyping Facility, a laboratory for the rapid construction and evaluation of digital systems. Support for the RPF has been provided by numerous companies, including Apple Computer, IBM, Sun Microsystems, Direct Imaging, Xilinx, Actel, Altera, National Semiconductor, and Viewlogic. Support for the RPF is also provided by the National Science Foundation, under grants CDA-8921062 and MIP-9222643. Finally, we thank the anonymous reviewers for their comments.

8.0 References

[1] J. Hennessy and S. McFarling, "Reducing the cost of branches", Proc. 13th Int. Symp. on Computer Architecture, Tokyo, Japan, pp 396-403, 1986.

[2] B. Bray and M. Flynn, "Strategies for branch target buffers", Proc. 24th Int. Symp. on Microarchitecture, Albuquerque, NM, pp 42-50, 1991.

[3] E. McLellan, "The Alpha AXP architecture and 21064 processor", IEEE Micro, pp 36-47, June 1993.

[4] D. Poplawski, "Low Cost Branch Prediction", Proc. 23rd Annual Allerton Conference on Communication, Control, and Computing, pp 979-983, October 1985.

[5] J. Fisher and S. Freudenberger, "Predicting conditional branch directions from previous runs of a program", Proc. 5th Int. Conf. on Architectural Support for Programming Languages and Operating Systems, Boston, MA, pp 85-90, 1992.

[6] J. E. Smith, "A study of branch prediction strategies", Proc. 8th Int. Symp. on Computer Architecture, pp 135-148, 1981.

[7] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach, San Mateo, CA, Morgan Kaufmann, 1990.

[8] W. Hwu et. al., "Comparing software and hardware schemes for reducing the cost of branches", Proc. 16th Int. Symp. on Computer Architecture, Jerusalem, Israel, pp 224-233, 1989.

[9] T. Yeh and Y. Patt, "Alternative implementations of two-level adaptive branch prediction", Proc. 19th Int. Symp. on Computer Architecture, Gold Coast, Australia, pp 124-134, 1992.

[10] S. Pan et. al., "Improving the accuracy of dynamic branch prediction using branch correlation", Proc. 5th Int. Conf. on Architectural Support for Programming Languages and Operating Systems, Boston, MA, pp 76-84, 1992.

[11] C. Perleberg and A. Smith, "Branch Target Buffer Design and Optimization", IEEE Transactions on Computers, Vol. 42, No. 4, pp 396-412.

[12] T. Keller, "SPEC benchmarks and competitive results", Performance Evaluation Review, Vol. 18 No. 3, pp 19-20, November 1990.

[13] M. Hill and D. Pnevmatikatos, "Cache performance of the integer SPEC benchmarks on a RISC", Computer Architecture News, Vol. 18 No. 2, pp 53-68, June 1990.

[14] M. D. Smith, "Tracing with pixie", Technical Report CSL-TR-91-497, Stanford University, Nov. 1991.

[15] A. Mital, "Branch prediction strategies and their effect on superscalar processors", Master's Thesis, Thayer School of Engineering, Dartmouth College, June 1993.

[16] D. Kaeli and P. Emma, "Branch history table prediction of moving target branches due to subroutine returns", Proc. 18th Int. Symp. on Computer Architecture, Toronto, CA, pp 34-42, 1991.

[17] H. Cragon, "Branch Strategy Taxonomy and Performance Models", IEEE Computer Society Press, Los Alamitos CA, © 1992.

[18] M. Hill, "The case for direct mapped caches", IEEE Computer, Vol. 21 No. 12, pp 25-40, December 1988.

�
FIGURES

�

Figure 1: Relationship of Branch Target Buffer to CPU�

�

Figure 2: Performance Modeling�

�

Figure 3: N-bit Counter-Based Branch Prediction�

�

Figure 4: 4-bit Correlation-Based Branch Prediction

for a 4K Entry Branch Target Buffer

� EMBED Word.Picture.6 ���

Figure 5: Relative Execution Time of Individual Benchmarks

Using a Single Prediction Bit�

� EMBED Word.Picture.6 ���

Figure 6: Relative Performance of 1 and 2-bit Counter-Based Branch Prediction�

�

Figure 7: Counter-Based Branch Prediction Combined With

Caching Only "Predict Taken" Branches

� EMBED Word.Picture.6 ���

Figure 8: Counter-Based Branch Prediction Combined With

Predicting Negative Branches as Taken�
�

Figure 8a: Differing Effects of neg Strategy on 1 and 2-bit Schemes

�

Figure 9: The Relative Performance of Correlation-Based Branch Prediction�
� EMBED Word.Picture.6 ���

Figure 10: Hit Ratio For Correlation Schemes

�

Figure 11: Cumulative Distribution of Correlation Vectors�
�

Figure 12: Observed vs. Binomial Distribution of Correlation Vectors

�

Figure 13: The Relative Performance of Counter-Based and

Correlation-Based Schemes�
� EMBED Word.Picture.6 ���

Figure 14: gcc Performance For Counter and

Correlation-Based Strategies

� EMBED Word.Picture.6 ���

Figure 15: ear Performance For Counter

and Correlation-Based Strategies

�
TABLES

Table 1: Benchmarks

Benchmark	Input Files	Static	Static	Dynamic	Calls	Negative	Unique

		Branches	Jumps	Branches		Branches	Dynamic

							Branches

compress	in	1,331	126	13,782,150	251,778	3,203,465	351

espresso	bca.in cps.in	7,899	533	79,932,308	1,855,792	26,460,770	1,661

eqntott	int_pri_3.eqn	2,312	231	294,844,314	4,810,468	26,102,364	801

gcc	see list below	33,159	2,092	104,071,426	6,769,833	14,529,555	27,546

doduc	doduc.in	8,488	735	111,266,242	6,352,494	24,173,354	1,917

ear	data.adc	1,884	223	134,174,747	22,511,285	36,477,984	698

fpppp	natoms	8,337	829	22,473,784	1,095,712	1,942,188	1,058

tomcatv	-	6,775	658	32,518,651	58,283	1,698,005	683

file lists for gcc:

1jump.i 2varasm.l 3toplev.i 1ccc.l 2dbxout.i 3genrecog.i 1emit-rtl.i 2regclass.i 3recog.i 1genoutput.i 2explow.i 3print-tree.i

1stmt.i 2cexp.i 3tree.i 1insn-recog.i

definitions of terms:

Static Branches:	Total number of control transfer instructions in a program

Static Jumps:		Total number of jump instructions in a program

Dynamic Branches:	Number of control transfer instructions executed

Calls:		Number of subroutine calls executed

Negative Branches:	Number of conditional branches with negative offsets

Unique Dynamic Branches:	Dynamic branches with unique addresses

�
Table 2: Branch Target Buffer Behavior

H= 	0/1 buffer miss/buffer hit

P = 	0/1 predict not taken/taken

B = 	0/1 branch not taken/taken

T = 	0/1 target incorrect / correct

Boldface entries indicate correct predictions.

	

	H	P	B	T	Comments

	0	0	0	0	Not possible. If branch is predicted as not taken and prediction is 					correct, buffer target always matches dynamic target.

	0	0	0	1	BTB miss, branch not taken. Correct prediction.

	0	0	1	0	BTB miss, branch taken. Misprediction.

	0	0	1	1	Not possible. Compiler should never generate code with 						fall-through address identical to target.

	0	1	x	x	Not possible. Assuming predict not taken on buffer miss.

	1	0	0	0	Not possible. See case 0000. 	

	1	0	0	1	BTB hit, branch not taken. Correct prediction.

	1	0	1	0	BTB hit, but mispredicted as not taken.

	1	0	1	1	Not possible. See case 0011.

	1	1	0	0	BTB hit, but mispredicted as taken.

	1	1	0	1	Not possible. See case 0011.

	1	1	1	0	"Moving target". Correctly predicted branch hit in BTB, 						but target has changed since last execution of branch. 							Due to control transfers with dynamic targets (dynamic 							subroutine calls, returns). Misprediction.

	1	1	1	1	BTB hit, branch taken. Correct prediction.

	Assumes "predict not taken" on BTB misses. Target address of "predict not taken" branches

	assumed to be address of next instruction.

�

Table 3:

Net Change in Mispredictions For Non-Loop Negative Branches

When Combining neg Strategy With 1 and 2-bit Counters

				1-bit	2-bit

		Prediction	Branch

		taken	taken	0	0

		taken	not taken	0	0

		not taken	taken	-1	-1

		not taken	not taken	+1	+1

�
Table 4: Most Common 15-bit Correlation Vectors

compress�
doduc�
eqntott�
espresso�
�
�
�
�
�
�
vector�
freq�
vector�
freq�
vector�
freq�
vector�
freq�
�
7FFF�
627,047�
7FFF�
14,105,118�
3249�
8,502,727�
7FFF�
14,167,243�
�
5B6D�
181,564�
7FFE�
1,703,903�
4C92�
8,112,649�
5EBD�
968,087�
�
36DB�
169,727�
3FFF�
1,703,903�
1924�
8,104,818�
57AF�
923,488�
�
6D6B�
166,201�
12FF�
1,702,308�
4926�
7,835,082�
7AF5�
918,456�
�
7777�
145,214�
5FFF�
1,700,670�
24C9�
7,751,272�
2F5E�
915,711�
�
3BBB�
140,492�
2FFF�
1,694,281�
4932�
7,751,065�
3D7A�
913,176�
�
6EEF�
131,411�
7FFD�
1,691,724�
2499�
7,750,944�
77BD�
900,166�
�
5DDD�
130,630�
7FFB�
1,691,616�
124C�
7,743,402�
5EF7�
899,407�
�
6EEE�
130,281�
17FF�
1,688,173�
1264�
7,743,351�
7BDE�
899,136�
�
6EF5�
117,536�
4BFF�
1,688,070�
6493�
7,729,437�
3DEF�
898,677�
�

ear�
fpppp�
gcc�
tomcatv�
�
�
�
�
�
�
�
�
�
�
vector�
freq�
vector�
freq�
vector�
freq�
vector�
freq�
�
7FFF�
71,118,598�
7FCF�
192,422�
7FFF�
4,668,006�
7FFF�
13,446,766�
�
7FFE�
693,048�
3FE7�
192,420�
5B6D�
766,954�
6FEF�
2,111,772�
�
3FFF�
693,048�
4FF9�
192,322�
6DB6�
722,364�
7F7F�
2,108,803�
�
5FFF�
671,625�
1FF3�
192,277�
36DB�
722,296�
77F7�
2,091,727�
�
7FFD�
637,158�
67FC�
184,717�
7FFE�
249,916�
7DFD�
2,090,429�
�
7FFB�
602,447�
73FE�
177,752�
3FFF�
249,916�
7BFB�
2,089,508�
�
7FF6�
490,240�
79FF�
177,732�
3DEF�
218,333�
3FBF�
2,087,918�
�
6FFF�
489,508�
5F2F�
137,965�
5FFF�
209,304�
7EFE�
2,086,665�
�
6D5E�
429,727�
7CFF�
127,051�
5EF7�
203,808�
5FDF�
2,085,597�
�
7FED�
428,762�
4BDE�
126,431�
6FFF�
190,285�
7FFE�
79,099�
�

�
Table 5: Costs of Branch Prediction Strategies

Strategy	Architectural Cost	Comments

h1	1 bit per BTB entry

h2	2-bit counter per BTB entry,	maximum improvement of 1.4% over h1

	hardware to update counter and make	under experimental assumptions

	prediction

nrepl	control logic to write to BTB	ineffective for larger BTBs

	only on taken branches

neg	hardware to detect negative 	< 1% improvement if combined with h1,

	displacement, override default	performance degradation if combined with 	prediction	h2

N-bit correlation	N-bit shift register, logic to modify it	better results than counter-based schemes

	based on branch outcomes, mechanism	for large buffers

	for incorporating register into BTB

	address

�
FOOTNOTES

Affiliation of Authors:

Barry Fagin is with the U.S. Air Force Academy, Department of Computer Science. He can be reached at 2354 Fairchild Drive, Suite 6K41, US Air Force Academy, CO 80840. Email: fagin@cs.usafa.af.mil. URL: http://www.rmii.com/~fagin/home.html.

Amit Mital is with Microsoft Corporation, Redmond WA.

Performance of Counter and Correlation Based Schemes for Branch Target Buffers

IEEE Transactions on Computers, Dec 95	�page * arabic�2�	B. Fagin and A. Mital

�The target could also be either a pointer to an instruction cache entry indicating the first instruction in the target path, or the instruction itself.

�True Floating Point

�Counter-based data are indicated with the letter h, for history, to more easily distinguish them from correlation-based data.

�Our simulations assume BTB access for branches only. Average dynamic basic block size was 4.5 for integer programs, 10.2 for floating point programs. These are large enough to preclude any performance penalties due to BTB updates for our studies, but systems with deeper pipelines and/or smaller basic blocks could experience performance degradation.

�The implications of this would be more serious if our data indicated significant incremental performance improvements for large BTB sizes. The data indicate, however, that further doublings in the number of entries for BTB's greater than 1K offer little performance improvement. Such increases are therefore contraindicated due to area considerations, regardless of their effects on access time.

