



Field Programmable Gate Arrays

and Floating Point Arithmetic



Barry Fagin1

Cyril Renard2



Dept. of Computer Science

2354 Fairchild Drive, Suite 6K41

U.S. Air Force Academy, CO 80840

719-472-3590

fagin@cs.usafa.af.mil



1Corresponding author

2IRESTE, University of Nantes, France











ABSTRACT



We present empirical results of an implementation of an IEEE Standard 754 compliant floating-point adder/multiplier using field programmable gate arrays. The use of FPGAs permits fast and accurate quantitative evaluation of a variety of circuit design tradeoffs for addition and multiplication.  These are discussed in detail.  FPGAs also permit accurate assessments of the area and time costs associated with various features of the IEEE floating-point standard, including rounding and gradual underflow.  These costs are analyzed, along with the effects of architectural correlation,  a phenomenon that occurs when the cost of combining architectural features exceeds the sum of separate implementation.  We conclude with an assessment of the strengths and weaknesses of using FPGAs for floating-point arithmetic.

�1.0 Introduction



	Field programmable gate arrays, or FPGAs, provide designers with new possibilities for flexibility and performance.  By combining high integration with user programmability, they permit designers to rapidly evaluate design alternatives.  FPGAs have been used successfully in a number of areas, including computational physics [1], digital signal processing [2], and general purpose computation [3].  Floating point arithmetic, however, has remained largely unexplored.

	Recent work at the Rapid Prototyping Facility of the Thayer School of Engineering has focused on the quantitative assessment of the utility of FPGAs in a variety of systems [3].  We have most recently investigated the use of FPGAs to evaluate architectural tradeoffs in RISC CPU design [4].  Work described here uses the approach in [4] to assess the issues in applying FPGAs to floating-point computation.  Our goal is to obtain a better understanding of the use of semi-custom logic in floating-point arithmetic.

	We chose the floating-point scheme described by IEEE Standard 754, hereafter referred to as the "standard".  It is by far the most common format in use today, it has the most desirable mathematical behavior, and provides a useful comparison point with other work.  Our use of FPGAs as a target technology permits the evaluation of area and performance costs of features of the standard, including rounding and gradual underflow.  This latter feature has been particularly controversial due to the extra hardware required to support it and the performance penalty this hardware requires.  We will say more about this in later sections.

	We begin with an overview of field programmable gate arrays, the IEEE floating-point standard, and our core system design.  We then present empirical results on design alternatives for addition and multiplication, and discuss the various costs associated with rounding and gradual underflow.  We conclude with a discussion of the strengths and weaknesses of using FPGAs for floating-point, and discuss directions for future work.



2.0 Field Programmable Gate Arrays



	Field programmable gate arrays,  or FPGAs, combine the integration of an ASIC with the flexibility of user-programmable logic.  FPGAs present the user with basic cells   and interconnect resources,   which  serve as the building blocks for design implementation.  Users specify their design with a schematic or hardware description language.  This design is then converted into a vendor-specific format by software, with the components of the design mapped onto the basic cells of the FPGA.  Once the design has been successfully simulated, interconnect resources are then programmed by the user, typically with a special device programmer.

	FPGAs are based on a number of different technologies.  Our target device is the Actel antifuse-based FPGA, first described in [5].  Its basic cells are referred to as logic modules,  or  LMs.   LMs are the basic unit of resource allocation on the FPGA; accordingly all our area measurements will be reported in units of LMs.  Our design targeted the A1280 chip of the ACT2 device family, which contains 1232 LMs and 140 usable pins.

	For more information on antifuse-based FPGAs, the reader is referred to [6].



3.0 The IEEE Floating Point Standard



	The IEEE standard for floating-point arithmetic is described in [7].  Developed to improve the portability and reliability of mathematical software across multiple computing platforms, it specifies floating-point formats, rounding operations, computing with exceptional conditions, and gradual underflow.  We describe the basic features of the standard here.

	The format of an IEEE single-precision floating-point number and its interpretation are shown in Figure 1.  A 32-bit number contains an 8-bit biased exponent field, a 23-bit significand, and a 1-bit sign.  For all non-zero exponent values, the significand is assumed to contain an implicit leading bit of 1, the "hidden bit", which must be unpacked during floating-point operations.  This corresponds to case (a) of Figure 1.  Case (b) signifies Not a Number, or NaN, produced when certain invalid operations are requested.  Case (c) represents signed infinity, produced as the result of an overflow, while case (d) is a signed zero.

	Case (e) is somewhat controversial, requiring extra logic to support in hardware or extra time to support in software.  Numbers of the format in case (e), with a zero exponent but a non-zero significand, are called denormalized numbers, or denormals.  These numbers exist between the smallest exponent value and zero, and are said to be denormalized because the leading bits of their significands are zero.  

	Support for denormals permits gradual underflow., which guarantees that  x ( y implies that x - y ( 0.  This has considerable advantages for software reliability, as well as a certain mathematical elegance, but is not without cost.  We discuss the hardware and performance costs associated with supporting gradual underflow in a later section.

	The IEEE standard also specifies four different rounding modes, used when the result obtained from a calculation is not representable exactly.  These modes are 1) round to zero (truncation), 2) round to +(, 3) round to -(, and 4) round to nearest.  This last mode, the default, also specifies that a result exactly between two representable numbers should be rounded to the result with a least significant bit of 0. These modes are shown in Figure 2.  Tick marks indicate representable numbers; non-representable numbers within a shaded triangle are rounded to the number at the triangle's vertex.  

	The default mode is the most difficult to support, requiring extra bits internal to the processor and special logic to manipulate them properly.  This is discussed in more detail in section 6.0.



4.0 Core Design and Functional Description



	We began our experiment with the development of a core design, a specification at the input/output level that all implementations of our floating-point system would conform to.  This core design served to standardize design alternatives, ensuring that observed results can be analyzed effectively.   Our core design is shown in Figure 3. 

	We next divide the addition and multiplication algorithms into three stages: exponent, significand, and normalization. The exponent stage determines the result of the exponent and shifts the appropriate significand as necessary.  The significand stage calculates the significand of the result; this is where the addition or multiplication is performed.  The normalization stage normalizes and rounds the result, if necessary.  These three stages, along with a list of internal signals, are shown in the detailed design in Figure 4.

	Once the basic algorithm was developed, we began investigating circuits for the adder and multiplier.  Many possibilities were considered,  with the limited resources of the gate array as the overriding concern.  This is discussed in 

the next section.



5.0 Space/Time Tradeoffs in Addition and Multiplication



	Since the heart of floating-point operand manipulation is the processing of the integer significands, we began with an exploration of circuits for integer addition and multiplication.  These circuits can be designed in a number of ways, occupying multiple points in the cost/performance plane, with different solutions attractive for different technologies.  We present our exploration of this design space below.  For a more detailed discussion of the issues involved in adder and multiplier design, the reader is referred to [8].



5.1 Addition

	We investigated the following designs for our 24-bit adder:



	1)  Ripple -carry addition.   The most straightforward way to implement an n-bit adder is to connect n full adders serially in the familiar rippled fashion.  The full adder macro in our FPGA design software required 2 logic modules, with one 6ns gate delay for the carry and two for the sum.  Thus a 24-bit adder consumed 48 LMs and had a critical path of 6*(23+2)  = 150ns.



	2) Carry-lookahead addition.  Ripple-carry adders offer minimum cost in exchange for minimum performance.  At the other extreme, carry-lookahead adders offer maximum performance in exchange for maximum cost.  The necessary circuitry for a full 24-bit carry lookahead adder required 260 LMs, with a critical path of 100ns.  This may seem unduly long in comparison with the ripple carry adder, but we note that the time for a 32-bit addition would remain unchanged.



	3) Carry-skip addition.  Carry-skip designs are intended to offer an alternative between ripple-carry and carry-lookahead implementations.  These designs compute the carry-propagation terms for several blocks in parallel, permitting the carry to skip over adjacent blocks if the carry from the previous block and the associated propagation term are available.  Our carry-skip design required 83 LMs and produced a 115ns critical path.  As expected, this is between the ripple-carry and carry-lookahead designs in terms of cost and performance.



	4)  "Hard macro." addition.   In addition to providing macros for a full adder, our design library included "hard" (that is, vendor supplied) macros for 16-bit and 8-bit adders.  These were combined to produce a 24-bit adder.  The resulting circuit used 141 LMs, with a critical path of 110ns.  We note that combining macros in this manner produces suboptimal circuitry, in that the carry propagation delay between the 16 and 8-bit sections would not occur in an integrated 24-bit design.



	5)  Carry-select addition.   Carry-select addition functions by performing two additions on groups of multiple bits in parallel: one that assumes a carry in of 0, one a carry in of 1.  Once the true carry is known, the correct sum is selected.  Our carry-select based design required 112 LMs, with a critical path of 70ns.  This design was chosen for our circuit, owing to its superior performance and moderate area requirements.



	A summary of the performance and area costs of each of these designs is shown in Table 1.  A scatter plot of this data in the cost/performance plane is shown in Figure 5.



Table 1: Area Cost and Performance of Adder Designs



Design�Area�Critical path�Perf�Perf/Cost���(LMs)�(ns)�(MHz)�(MHz/LM)��������Ripple-carry�48�150�6.67�.139��Carry-lookahead�260�100�10�.38��Carry-skip�83�115�8.70�.105��Hard macro�141�110�9.09�.64��Carry-select�112�70�14.29�.128��

	We note that the carry-select design offered the best performance of all candidates, including full carry-lookahead.  This is due to the nature of the full adder macro in the Actel design suite, and the mux-based nature of the underlying technology.  The Actel adder macro uses two cascaded multiplexers to implement 2-level carry selection in a single gate delay [6].  This makes for a very fast implementation of a carry-select adder.  Additionally, the basic cell of the Actel FPGA is mux-based.  Logic that is specified using gates can often be more efficiently implemented using multiplexers.  This means that designs employing multiplexers, such as the carry-select adder, map very efficiently onto target macros.  In fact, Actel macros for fast adders use the carry-select scheme.  This explains why the "hard macro" solution is so close in performance to the carry-lookahead design.

	Although the ripple-carry design offered the best performance to cost ratio, we chose to  implement the carry-select design.  The improvement in performance was, we felt, more than worth the cost, particularly since our preliminary estimates indicated that the number of LMs associated with the adder was less than 5% of the total.  

	The unusual performance of the carry-select design is an example of a technology-dependent effect of FPGAs on the system design process; others have been documented in [9].  The nature of the basic cell of the target FPGA device can introduce nonlinear effects in the cost/performance function of circuit design, indicating that a familiarity with the underlying technology is essential to any FPGA designer.  The independence of technology from design for FPGAs, regretfully,  has yet to be achieved, although with the increasing sophistication of CAD tools and the proposed standardization of FPGA design software, advances in this direction remain possible.



5.2 Multiplication

	Our basic scheme for unsigned integer multiplication is shown in Figure 6.  The integers to be multiplied are placed in the B and C registers, A is initialized to 0, and then repeatedly added to either C or 0 depending on the least significant bit of B.  With each operation, the A and B registers are shifted one bit to the right.  After n cycles, A and B contain the 2n-bit product.  Implementing this circuit using the carry select adder of the previous section requires 260 LMs with a cycle time of 100ns.  This gives a 24-bit multiplication time of 2400ns.

	One way to improve the performance of this circuit is to reduce the time of the addition operation through the use of a carry-save adder.  Carry-save adders are simply multiple combinations of full adders that work independently, saving the carry until the final step of the calculation.  Since carry save adders work in parallel and do not propagate carries, the time for each addition is dramatically reduced.  This performance advantage is paid for with extra hardware to store the saved carry bits.  An extra addition is also required at the end of the operation to combine the sum and carry bits.  Our implementation of this design required 385LMs, reducing the cycle time to 63ns.  The total multiplication time improved to 63*24+70=1582ns, using the carry-select adder of section 5.1 for the final addition.

	Additional adders can also be applied to reduce the number of cycles.  At one extreme, a combinatorial array of carry-save adders can be employed, providing a result in a single clock cycle.  Our implementation of this approach employed 24 carry-save adders, and produced a result in a single cycle of 460ns.

The resulting design, however, required 2704 LMs.

	Our last multiplier reflected a compromise approach, employing 8 carry- save adders.  This design resulted in a cycle time of 200ns and a 4-cycle multiply.  This yielded a multiplication time of  800ns, while requiring 1103 LMs.  The parameters of each of the examined designs and their locations in the cost/performance plane are shown in Table 2 and Figure 7.



Table 2:  Area Costs and Performance of Multiplier Designs



Design�Cost (LMs)�Cycle Time (ns)�Latency (ns)�Perf/Cost (KHz/LM)��������Basic�260�100�2400�1.60��1 CSA�385�63�1582�1.64��8 CSA�1103�200�800�1.13��Combinatorial�2704�460�460�0.80��		

	We selected the 8-CSA design for our final implementation because we felt it offered the best tradeoff between latency and resource requirements.  Other designs had better performance to cost ratios if considered in isolation, but once total system performance is taken into account we believed their accompanying latencies would be unacceptable.  

		

6.0 Area and Performance Costs of Pipelining, Rounding and Gradual Underflow



	In addition to improving the function available to the designer while decreasing design time, FPGAs permit the evaluation of architectural tradeoffs [4], [10].  In this experiment, we chose to measure the area and performance costs associated with pipelining, rounding, and gradual underflow.  The design of Figure 4, for example, is sequential: the inputs are presented to the exponent stage, the CLK signal rises, and the results emerge from the outputs.  Clearly this design is a good candidate for pipelining, reducing the critical path at the cost of extra registers and control logic.  We attempt to assess this cost here.

	By the cost associated with rounding, we mean support for the 4 rounding modes described in section 3.0.  Supporting all these modes in hardware requires extra registers and special logic for the manipulation of three extra bits: "guard", "round", and "sticky".  These bits are shown in Figure 8.

	The guard and round bits are required to support rounding to the nearest representable integer.  The sticky bit is required to round to the nearest even representable number in case of a tie.  This is done by setting the sticky bit to 1 whenever a 1 is shifted through it, and leaving it set until the next operation.  1s are said to "stick" in this position, hence the name "sticky" bit.  Support for the sticky bit requires extra logic.

	None of these bits is required for rounding toward zero, or truncation.  Thus implementers working in an application domain where speed is more important than accuracy  may wish to free the area devoted to these bits in exchange for other hardware support.  Our experiments provide some indication of what the associated area costs are.

	Finally, the IEEE standard requires support for gradual underflow and denormals, as described in section 3.0.   Supporting denormals in hardware introduces complications in the normalization stage of the multiplication and addition algorithms, in that a variable right shift could be required after the output emerges from the multiplier if the result is a denormalized number.  The area required for the shifter and other logic, along with the propagation delay time through it, can be traded off against the expected performance consequences of handling denormals in software.

	Given the three features of pipelining, rounding, and gradual underflow, 

each feature can be either absent or present in a design.  We performed a complete examination of the design space by examining the area requirements of all 23 = 8 possible designs.  The results are shown in Table 3.  A 0 in a table entry indicates the absence of the associated feature, while a 1 indicates its inclusion.



Table 3: Area Costs of Pipelining, Rounding, and Gradual Underflow



Pipelining�Rounding�Gradual�LMs����Underflow��������0�0�0�2642��0�0�1�2828��0�1�0�3362��0�1�1�3929��1�0�0�2805��1�0�1�2991��1�1�0�3525��1�1�1�4098��

	To better view the costs of each feature separately, we can place each design at the vertex of a boolean 3-cube, labeling each axis with the difference in area requirements.  This arrangement is shown in Figure 9.  The basic design is at vertex 000, with the inclusion of features as specified in the axes on the right.  Edges are labeled with the number of LMs necessary to include the associated feature, along with the accompanying percentage increase.  

	We see from Figure 9 that the cost of pipelining is not particularly significant, ranging between 4 and 6% for any design.  This is not surprising, given the lack of feedback in Figure 4 and the ease with which floating-point addition and multiplication algorithms are pipelined.  The necessary logic is essentially some extra registers and control circuitry, a relatively small investment for the expected improvement in performance.

	We note that all arrows pointing in the 'z' direction, corresponding to the inclusion of pipelining in a design, contain values very close to one another.  This suggests that architectural support for pipelining is independent of the other features in the design space.  This is not true, however,  for arrows in the 'x' and 'y' directions.  Support for denormals, for example, requires an extra 186 LMs if rounding is not supported, but approximately 3 times as many LMs if rounding is supported.  This is because gradual underflow and rounding are architecturally correlated : circuitry is required when both features are present that is not required if either feature is used individually.

	To see why this so, consider the decision to add denormalized numbers to designs with and without rounding.  A design that already supports rounding without denormalization will require the addition of both a variable-width shifter at the output of the normalization stage and extra logic to support the correct manipulation of the guard, round, and sticky bits associated with the shifter.  A design without rounding, by contrast, requires only the extra shifter.  This explains why the arrows in the y direction in the right half of Figure 9 are labeled with a significantly larger value than those in the left half: i.e. "100" -> "101" = +186 (7%) but "110" -> "111" = +573 (16%).  These values represent the resources necessary to add denormalized numbers to designs that already support the 4 rounding modes.  The logic needed to manipulate the guard, round, and sticky bits associated with the denormalization shifter is only required if both rounding and gradual underflow is supported.

	We may examine architectural correlation more closely by examining the effects of feature incorporation on individual pipeline stages.  A breakdown of the four pipelined designs is shown in Figure 10.   We see that support for denormalized numbers affects only the normalization stage, due to the addition of the variable width shifter.  Adding rounding to a base design, by contrast, requires significant changes to both the exponent and normalization stages due to the manipulation of the guard, round, and sticky bits.  Finally, adding rounding to a design that supports denormals requires both the addition of the rounding logic required for the base design plus extra logic for the variable- width shifter in the normalization stage.  This explains the large increase in normalization logic in design 111.

	In addition to area costs, the decision to support rounding and gradual underflow has performance costs as well.  Simulations indicate that the cycle time of 200ns, initially determined by our multiplier design,  is lengthened if rounding and/or denormalized numbers are supported.  For designs that support rounding alone, the worst case occurs when addition is performed using the largest number and the rounding mode is towards (.  The generation of overflow from the rounding logic increases the critical path to 245ns, whether or not denormalized numbers are supported as well.  For designs that support denormalized numbers without rounding, the delay through the shifter increases the critical path to 235ns. 	

	For a more detailed discussion of these tradeoffs and other issues, the reader is referred to [11]. Copies may be obtained from barry.fagin @dartmouth.edu.



7.0 Conclusions



	Our final design was partitioned over 4 A1280 FPGAs, with a 3-stage pipeline and a cycle time of 245ns.  Addition has a 3 cycle latency, while a multiply requires 6 cycles:  1 for the exponent stage, 4 for the significand stage, and 1 for the normalization stage.  We were unable to reduce the latency for multiplies due to the resources required for the 24-bit multiplier.

	In fact, the multiplier is the largest single component of our system.  As Table 2 shows, the design with the best performance currently does not fit on the largest density chip available from our vendor.  This is due to the large data width required by our system, as single chip 8-bit multipliers are currently available [6].  Pin limitations do not appear to be a problem, but current chip densities need to improve by a factor between 2 and 4 before 24-bit multipliers can fit on a single die.  Our results indicate that this is the single most significant obstacle to floating-point calculation using FPGAs.

	We were also able to use FPGAs to rapidly explore the design space in a variety of ways.  Our designs for adders and multipliers indicate that technology-dependent effects predominate.  The superior performance of the carry-select adder, for example, was due to the existence of efficient mappings between it and the basic cell structure of the target FPGA technology.  As the technology matures, we hope that the relationships between the target device structure and optimal design will disappear.  Just as compilers are now sufficiently sophisticated to permit users to write efficient programs independent of the architecture of the target machine, we hope that CAD tools will advance to the point where designers can produce efficient designs without a knowledge of the basic structure of the FPGA.  Our results indicate, however, that this goal remains elusive.

	Finally, our experiments suggest that FPGAs can be used effectively to evaluate design tradeoffs, and to empirically evaluate the costs of including architectural features.   Users wishing to support a subset of a given set of features can obtain a better understanding of the consequences of design choices, to decide which options are right for their application.  Users who wish to trade speed for accuracy, for example, may choose to truncate inexact results and reduce chip cycle times.  Precision can also be sacrificed; by implementing a shorter data word, the area requirements of the multiplier are reduced and faster implementations can be employed within the resource constraints of a single chip.  We have focused on the IEEE floating-point standard, but the techniques described here apply to virtually any set of architectural features to be implemented under resource constraints. 

	The existence of architectural correlation,  however, complicates the design decision.  Features may require greater resources when combined than when  implemented separately, as indicated by our analysis of gradual underflow and rounding.  Architectural correlation implies that an understanding of individual architectural features is not sufficient for cost/performance analysis.  A knowledge of how features interact is essential.

	For future work, alternative datapath widths can be investigated to better understand speed/precision tradeoffs.  Other standards and application domains, such as data compression and image processing, can be explored using FPGAs.  It is also important to see how strongly our results apply to other technologies, including reprogrammable FPGAs and EPROM-based devices.

	Perhaps most critically, comparison with other technologies is warranted.  It is important to compare the results obtained with these experiments to similar analyses for full custom ASICs, to better understand the effects of device technology on the area and performance cost of architectural feature support.

	

8.0 Acknowledgements



	The authors thank Doug Fraser, John Erickson and Tad Truex for their assistance, and the referees for their efforts to improve the quality of the paper.  We also thank Professor Yves Thomas and IRESTE at the University of Nantes for their support of the Dartmouth/Thayer exchange program.

	We worked at the Thayer Rapid Prototyping Facility, a laboratory for the rapid design and evaluation of digital systems.  Direct Imaging Incorporated, Actel Corporation, Xilinx Incorporated, Sun Microsystems, Viewlogic Incorporated, IBM, and National Semiconductor all provided support.  The National Science Foundation funded this research under award numbers MIP-9222643 and MIP-9312350.



9.0 References



[1] S. Monaghan et. al., "Use of FPGAs in Computational Physics", Proceedings of the 1991 International Workshop on Field Programmable Logic and Applications, pp 363-372, September 1991.



[2] D. Chen et. al., "A Field Programmable Architecture for High Speed Digital Signal Processing Applications", Proceedings of the First International ACM/SIGDA Workshop on Field Programmable Gate Arrays, Berkeley CA, pp 117-122, 1992.



[3] B. Fagin, "Quantitative Evidence of FPGA Utility in Special and General Purpose Processors", Journal of VLSI Signal Processing,  Vol 6, pp 129-137, June 1993.



[4] B. Fagin et. al., "Quantitative Analysis of RISC CPU Design Tradeoffs Using Field Programmable Gate Arrays", submitted to IEEE Transactions on Computers,  August 1993.



[5] A. El Gamal et. al., "An Architecture For Electrically Configurable Gate Arrays", IEEE Journal of Solid State Circuits,  Vol 24, pp 394-398, 1989.



[6] ACT( Family Field Programmable Gate Array Databook, Actel Incorporated, 1992.



[7] IEEE Task P754, "A Proposed Standard for Binary Floating-Point Arithmetic", IEEE Computer,  Vol. 14 No. 12, pp 51-62, March 1981.



[8] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach,   San Mateo, CA, Morgan Kaufmann Publishers Inc.,  1990.



[9] B. Fagin, "Using Antifuse-Based FPGAs In Performance-Critical Digital Designs", Proceedings of the 4th Microelectronics System Education Conference and Exposition, San Jose CA, pp 225-234, July 1991.



[10] P. Chan and M. Schlag, "Architectural Tradeoffs in Field-Programmable-Device-Based Computing Systems", Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,   Napa CA, 1993.



[11] C. Renard, "FPGA Implementation of an IEEE Standard Floating-Point Unit", Technical Report, Thayer School of Engineering, Dartmouth College.  

�10.0 Figures



�





INTERPRETATION

	a) if 0 < e < 255, then value = (-1)s * 2e-127 * 1.m

	b) if e = 255 and m ( 0, then value = NaN

	c) if e = 255 and m = 0, then value = (-1)s * (

	d) if e = 0 and m = 0, then  value = (-1)s * 0 , (zero)

	e) if e = 0 and m ( 0, then value = (-1)s * 2-126 * 0.m

	

Figure 1: IEEE Single-Precision Floating-Point Format and Interpretation



�



Figure 2: IEEE Rounding Modes



� EMBED Word.Picture.6  ���



INPUTS:

	N0, N1 32-bit IEEE standard floating-point operands

	OP  1-bit operation code (0=add, 1=mult)

	RND: 2-bit control signal indicating rounding mode

	OE*: output enable for RESULT, see below)

	RESET*: system initialization signal

	CLK: system clock



OUTPUTS:

	RESULT: result of OP applied to N0, N1

	IVAL: indicates invalid operation

	INEX: indicates inexact operation

	OVER: indicates overflow

	UNDER: indicates underflow







	

Figure 3: Core Design and Input/Output Signal Description



�





INTERNAL SIGNALS:



	EX_OP: 2-bit control signal indicating exceptional operation that requires specially encoded result.  00 = no exception, 01 = zero, 10 = +(, 11 = -(.

	IVAL_OP: invalid operation

	OVER_MULT, UNDER_MULT: over/underflow detection during exponent calculation of a multiplication

	R_exp: exponent of result

	MANTA_A, MANT_B: unpacked significands

	S_A, S_B: sign of significands

	CARRY: carry from new significand, needed for normalization and rounding

	R_mant: significand of result

	R_sign: sign of result





Figure 4: Core Design Detail and Internal Signal Description

�



Figure 5: Adder Designs in Cost/Performance Plane



�



Figure 6: Basic Scheme For Unsigned Integer Multiplication

�



Figure 7: Multiplier Designs in Cost/Performance Plane







�



Figure 8: The Guard, Round, and Sticky Bits





�



Figure 9: The Design Space as a Boolean 3-cube





�



Figure 10: Area Requirements of Pipelined Designs

FPGAs and Floating Point	FULL PAPER	Feb. 1994





Expanded from IEEE Trans.on VLSI  Systems 	�page \* arabic�22�	B. Fagin and C. Renard








