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Abstract—We describe the development of IRONSIDES, an 

implementation of DNS that is provably invulnerable to remote 

code execution exploits and single-packet denial of service 

attacks.  Our experimental results show it to be over three times 

as fast as BIND, the most common implementation of DNS. 
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I.  INTRODUCTION 

The Internet Domain Name System, or DNS, is an essential 
component of internet infrastructure.  Responsible for turning 
names into IP addresses, its protocols are running on hundreds 
of thousands of computers all over the world.  Designed 
originally to solve a problem of scalability during the early 
days and rapid growth of the ARPAnet, it has by any standard 
been an incredible success. 

This success, however, has come with a price.  Because 
DNS originates in the earliest days of the internet, before 
security issues were well understood, its most popular 
implementations are rife with security vulnerabilities.  DNS 
servers around the world can be crashed by hackers, or even 
worse, taken over by them. 

To address this problem, we have developed IRONSIDES, 
a DNS server that is provably invulnerable to many of the 
problems that plague other servers.  It achieves this property 
through the use of formal methods in its design, in particular 
the language Ada and the SPARK formal methods tool set.  
Code validated in this way is provably exception-free, contains 
no data flow errors, and terminates only in the ways that its 
programmers explicitly say that it can.  These are very 
desirable properties from a computer security perspective. 

IRONSIDES is not only stronger from a security 
perspective, it also runs faster than its leading competitors.  It 
provides one data point showing that one need not trade off 
reliability for performance in software design. 

We begin with an overview of the problem IRONSIDES is 
designed to solve.  We then discuss why we believe the time is 
ripe for formal methods to play a role in improving the security 
posture of internet infrastructure software.  We describe 

IRONSIDES, our experimental results, and conclude with a 
summary and directions for future work. 

II. THE NATURE OF THE PROBLEM 

A. What is BIND? 

BIND stands for the Berkeley Internet Name Domain 
server.  Originally written in 1984, it has been ported to a 
number of systems and compilers, and has been maintained in 
the public domain since its inception.   

According to one source, in 2003 BIND handled about 85% 
of all the internet DNS requests [1].   A more recent survey of 
over 1 million sampled domains showed that over 75% are 
running BIND [2].  Thus security problems in BIND would 
seem to merit the most attention, since they would have the 
greatest impact.  Hackers, of course, know this quite well, and 
would naturally focus their efforts on BIND.  They have found 
and exploited numerous flaws. 

B. DNS Security Vulnerabilities 

Virtually all DNS servers running today contain significant 
security vulnerabilities.  The problem is particularly acute in 
BIND, due to three factors:  a) BIND was the first 
implementation of DNS, b) BIND is written in C, a language 
where it is easy to make mistakes that cause security 
vulnerabilities, and c) BIND is open-source, which means 
security holes can quickly be identified and exploited.  To deal 
with these problems, the latest release of BIND (v9) is a 
complete rewrite from scratch.  It is a significant improvement, 
but flaws are still being found. 

Security problems, however, are by no means limited to 
BIND.  Windows DNS was designed and implemented much 
later than BIND, and is proprietary software, but still has 
numerous security vulnerabilities. 

C. Types of Vulnerabilities 

Although there are dozens of security flaws in DNS 
software, the known ones can be classified into a few distinct 
types: 
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• DOS:  Denial of Service.  This flaw means the server 
can be crashed by a client sending it a specially 
formatted  query.   

• RCE:  Remote Code Execution.  The attacking 
program sends a non-standard query that diverts 
execution flow to malicious code, giving the attacker 
control of DNS on the target machine. 

• Spoofing/cache poisoning:  Attackers  inject incorrect 
information into DNS to misdirect traffic from its 
correct destination to one selected by the attacker. 

• Protocol weaknesses:  These exploit security defects 
inherent in the DNS protocol or algorithms themselves.  

D. Current Status and Impact of DNS Security Vulnerabilities 

Just how serious are DNS security flaws?  For BIND, as of 
this writing an analysis of the security advisories at 
http://www.isc.org/ shows a total of 45 vulnerabilities.  
Twenty-four of these are remote denial of service attacks, nine 
are remote exploitation/execution.  The remaining twelve are 
weaknesses in cryptographic algorithms, the DNS protocol 
itself, or similar problems with the algorithms themselves 
rather than their implementation.   

The statistics for Windows DNS security flaws are more 
difficult to determine.  However, our examination of published 
Microsoft Security bulletins from the past five years found 
eight related to Windows DNS.  In reverse chronological order, 
they are: 

• MS11-058 – two vulnerabilities, one denial of service 
and one remote exploit 

• MS11-030 – remote code execution 

• MS 09-008 – spoofing vulnerability 

• MS 08-037 – spoofing vulnerability (2) 

• MS 08-020 – spoofing vulnerability 

• MS 07-062 – spoofing vulnerability 

• MS 07-029 – remote exploitation 

• MS 06-041 – remote exploitation vulnerabilities (4) 

This gives a total of thirteen known security flaws in 
various versions of Windows DNS.  

In principle, these vulnerabilities and those of BIND can be 
removed by applying the appropriate patches/code updates.  In 
practice, however, updates are not always applied in timely 
fashion, if ever.  More importantly, since there is no claim of 
formal validation for either of these implementations, it is 
likely that both contain further as yet unknown security holes 
for hackers to exploit. 

From this point forward, we concern ourselves only with 
the security and performance of BIND.  For a comparison of 
IRONSIDES with Windows DNS, the reader is referred to [3]. 

III. FORMAL METHODS AS A SOLUTION 

One reason security flaws exist in software is because our 
ability to reason about software has lagged far behind our 
ability to write it.  It has long been known that in principle it is 
possible to prove correctness and security properties of 
computer programs.  But in practice, the difficulties in doing so 
efficiently have proven extremely challenging.   

Attempts to use proof techniques from mathematics in 
software design belong to the computer science discipline 
known as formal methods. For most of computing since the 
days of the internet, the use of formal methods for all but the 
most trivial of programs has been either impossible or grossly 
cost-ineffective.  The result has meant that most errors are 
discovered and removed from software via pre-release testing.  
Further errors are either discovered by users or exploited by the 
hacker community, with the results being repaired in post-
release patches.  This describes the current state of most 
modern security vulnerabilities, and DNS vulnerabilities in 
particular.  

A. Progress in Formal Methods 

Fortunately, our ability to automatically prove program 
correctness has improved significantly.  As tools have become 
more cost-effective and user friendly, the scope and power of 
software for which formal methods can be applied has grown 
dramatically.   

For example, research from Microsoft’s SLAM project was 
incorporated into releases of Windows Vista.  Based on a 
formal methods approach, Vista’s device driver validation 
module detects if drivers linked to it violate certain interface 
rules [4].  The next year, Heitmeyer and Jeffords [5] reported 
the successful use of the SCR requirements model in the Deep 
Impact probe and International Space Station software.  
Implementing the Common Criteria for Information 
Technology Security Evaluation has proven fertile ground for 
formal methods, as shown by Heitmeyer and others [6]. 

In 2008,  Airbus described its successful use of the SCADE 
system to automatically generate code from formal 
specifications in its A340-500/600 aircraft [7].  Sony developed 
the firmware for its new contactless IC cards using the VDM++ 
and VDMTools relying on formal methods [8].  More recently 
still, the Verisoft project, funded by the German Federal 
Ministry of Education and Research, published claims of proof 
of correctness of a real-time operating system known as OLOS, 
designed for automotive applications [9]. 

We have taken advantage of the recent progress in formal 
methods to construct and eventually release IRONSIDES, an 
open-source, provably exception-free implementation of DNS.  
We now turn to a discussion of the source language and tool set 
used, and then discuss its functionality, performance, and 
security properties. 

B. SPARK:  A Tool for Creating Provably Correct Programs 

The SPARK language and toolset from Praxis Critical 
Systems Limited is used in the creation of software systems 
with provable correctness and security properties [10].  SPARK 
is a subset of Ada, augmented with special annotations.  These 
annotations appear as ordinary comments to Ada compilers, but 
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are visible to SPARK’s pre-processing tools used to verify the 
software.  SPARK is a fairly mature technology and has been 
used on several projects [11], [12], [13].  Accordingly, given 
our prior institutional experience with Ada [14], we chose 
SPARK and Ada as the platform for constructing DNS 
software that would not be subject to most of the vulnerabilities 
that afflict DNS implementations currently deployed around 
the globe. 

IV. IRONSIDES:  FORMAL METHODS AND DNS 

IRONSIDES is an Ada/SPARK implementation of the 
DNS protocols.  Currently, it supports only authoritative name 
service, but future versions are expected to support recursive 
queries.  We are also in the process of adding support for 
DNSSEC, the protocol that adds encryption to DNS transaction 
to further reduce vulnerability to spoofing and other attacks 
[15].   

The architecture of IRONSIDES is shown in Figure 1.  
IRONSIDES was written from the “ground up” in 
Ada/SPARK, using the relevant RFC’s and other descriptions 
of DNS as a guide [16-19].  

 

Figure 1.  IRONSIDES System Archtiecture 

As of this writing, verification of IRONSIDES requires the 
generation and proof of 6,183 verification conditions, or VCs. 

These include assertions that variables always remain in type, 
array bounds are never exceeded, specific pre- and post- 
conditions of procedures are always true, and so forth.   When a 
VC is proved, it is said to be discharged.  Discharge of a VC is 
accomplished through a multi-stage process using the SPARK 
automatic theorem proving tools.  For the VCs in IRONSIDES, 
2,086 were proved by the first stage of the tools, and 4,033 by 
the second, almost 99%.  The remaining 1% of VCs were 
sufficiently complex to require the use of the Alt-Ergo theorem 
prover [20], built into SPARK as an option to discharge VCs 
that the other tools cannot.   

Software verification is not considered complete until all 
VCs are discharged.  For IRONSIDES, the complete 
verification of code through the discharge of all VCs, from 
their initial generation to the final summary report, takes 3 
minutes 6 seconds on an IBM ThinkPad X220 Tablet PC with 
8GB of memory. 

As a result of this process, IRONSIDES code is known to 
be free of uninitialized values, data flow errors (e.g. writes that 
are never read or values derived from incorrect sources), array 
bounds errors, and all runtime exceptions.  This renders it 
invulnerable to single-packet denial of service attacks and all 
remote execution exploits.  If IRONSIDES is properly 
compiled and configured, it cannot be taken over as a result of 
any external input, no matter when the input arrives and no 
matter how it is formatted.  Also, it cannot be crashed and all 
its loops are guaranteed to terminate, which renders it 
invulnerable to denial of service attacks that rely on badly 
formatted packets. It is, as far as we know, the only DNS server 
to make these claims. 

A. Experimental Results 

In this paper we compare the performance of IRONSIDES 
with BIND using the DNS stress testing tool ‘dnsperf” [21].  
Because IRONSIDES is still in its early stages of development, 
it does not have all of BIND’s features.  Any comparison thus 
needs to take these differences into account. Following the 
style of [22], we show a comparison of IRONSIDES and BIND 
in Table I below.  Footnotes and parenthetical comments for 
BIND are omitted to save space. 

 

TABLE I.  IRONSIDES AND BIND FEATURE COMPARISON 

Server Authoritative Recursive 
Recursion 

ACL 

Slave 

mode 
Caching DNSSEC  TSIG  IPv6  

Wildcard 
Free 

Software 
Interface 

split 

horizon 

BIND Y Y Y Y Y Y Y Y Y Y 
Web, 

command 

line 
Y 

IRONSIDES Y* N N N N 
in 

progress N Y N Y 
command 

line N 

*The following resource record types are currently supported:  A, AAAA, CNAME, MX, NS, PTR, SOA. 

 

Spark_DNS_Main

Zone_File_IO

dfcs.usafa.edu.zonefile

TCP_DNS_Package

Task which 

repeatedly looks for 

TCP queries

UDP_DNS_Package

Task which 

repeatedly looks for 

UDP queries

DNS_Network (Ada)

Handles low level 

network I/O

Multitask_Process_

DNS_Request (Ada)

Creates new task for 

each query

Process_DNS_Request

Interprets packet, does 

table lookup and 

prepares response

DNS_Network_Receive

SPARK wrapper for 

network receives to 

guarantee no overflows

DNS_Types

(Byte_Swap)

Task_Limit

Enforces limit on 

max # tasks

SPARK_Ada_Command_Line

Read command line argument

Socket_Timeout 

(Ada)

Low level routine to 

set timeout on 

socket

DNS_Table_Pkg
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IRONSIDES, for example, does not yet support recursive 
queries and slave mode operation.  Caching will be added once 
recursive queries are supported, and DNSSEC/TSIG are in 
progress.  We do not currently have plans to support 
wildcarding or split-horizon DNS.  Readers interested in 
learning more about these terms are referred to [22]. 

Our experimental test bed for comparing BIND and 
IRONSIDES is shown in Figure 2: 

 

Figure 2.  Test Bed for Comparing DNS Implementations 

‘dnsperf’ runs on a Backtrack 5.0 client virtual machine.  
For the server VM we used Ubuntu 11.0.  Testing is done by 
starting up the DNS server to be tested and then running 
dnsperf.  Only one DNS server, server VM, and client VM are 
active at any one time.   

Since the purpose of the experiment is to measure the 
computational performance of the server, all VMs are loaded 
on the same computer, in this case an ACE 2600 Workstation 
with 8GB of RAM.  Using the same computer for client and 
server eliminates the effect of network latency.  ‘dnsperf’ 
issues queries over the standard DNS port to whichever server 
is listening.  The server in turn responds as appropriate.  At the 
end of a run, the tool generates a performance report. 

For each server, we performed three test runs and averaged 
the results.  (For all tests, the standard deviation was never 
higher than 2.1% of the mean, so we believed three test runs 
were adequate). The performance of BIND and IRONSIDES is 
shown below: 

 

Figure 3.  BIND and IRONSIDES Performance 

B. Analysis 

IRONSIDES is over three times faster than BIND on 
Linux.  Given IRONSIDES’ superior security posture, we find 
these results significant.  They show that one need not sacrifice 
security for performance in software design. 

In fact, it should not be that surprising that there are at least 
some instances in which the use of formal methods can 
improve performance.  Data flow analysis, for example, can 
identify redundant or ineffective statements that generate 
unnecessary code.  Code that has been proven exception-free 
no longer needs run-time bounds checking, so that code can be 
eliminated as well.  

On the other hand, there are also cases where total reliance 
on formal methods negatively impacts performance.  Given the 
current state of the art in formal methods tools, it continues to 
be appropriate to allow programmers the flexibility to override 
warnings of unproven properties when they believe the 
tradeoffs are worth it.  This is especially true if they themselves 
can see that certain properties hold, even when tools cannot 
make that determination. 

For example, DNS queries return data of varying size.  The 
use of dynamically allocated data structures significantly 
complicates formal analysis, and renders the ability to bound 
the maximum storage required for a program impossible.  For 
this reason, SPARK requires all data structures to be statically 
allocated [9].  Thus routines that return varying amounts of 
data use an output data structure of fixed size, defined at 
compile-time as a known upper limit.   

Data flow analysis of such structures, however, requires 
that all such storage be explicitly initialized, to ensure that stale 
data is never passed back and that undefined values are never 
used.  Arrays in SPARK in particular are treated as entire 
variables.  Thus initializing an array in a loop with a statement 
like A(I) := 0 is considered a dataflow error, because only part 
of A is set.  Instead, the use of Ada aggregates is required to 
eliminate dataflow errors. 

This “precautionary principle” can have significant 
performance consequences.  If only one entry of an array is 
filled and returned by a procedure, but 128 entries must be 
explicitly initialized, this is inefficient and wasteful.  Thus in a 
few cases throughout the code where such things matter, we 
removed aggregate initialization, with explicit instructions to 
the tools to ignore all related dataflow errors.  We then 
manually inspected the code to ensure this did not introduce 
any security vulnerabilities.  For example, by keeping a simple 
index variable to indicate the upper limits of useful data, it can 
be shown by inspection that undefined or stale data is never 
read.  Employing this optimization improved the performance 
of IRONSIDES by 29%. 

Our experience indicates that allowing users to override formal 
proof requirements when appropriate is an important feature 
that current formal methods tools should always support.   
Since such overriding is optional, users in environments where 
manual verification of source code is deemed too risky can 
revert to the original, formally verified source code at some 
cost in performance.  
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100

200

DNS server performance
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BIND IRONSIDES

860



 

C. Resistance to Denial of Service Attacks 

IRONSIDES is invulnerable to denial of service attacks 
caused by badly formatted packets that raise exceptions.  But 
terminating a server is not the only way to deny service.  If the 
server can be thrown into an infinite loop, service is just as 
effectively denied.  IRONSIDES is invulnerable to this form of 
service denial as well, because the tools employed help prove 
that all of its 85 loops terminate.  This is accomplished by 

using loop invariant assertions to show that loop variables 
monotonically increase and have an upper bound.  This is not 
accomplished automatically by SPARK, but with appropriate 
loop assertion annotations added by the programmer SPARK 
can assist in showing these properties to be true. 

For example, consider the code below: 

 

       
      -- Amount_Trimmed is used to guarantee we don't end up in an infinite loop 
      while Answer_Count=0 and Amount_Trimmed<RR_Type.WireStringType'Last and 
            Natural(Character'Pos(Current_Name(Current_Name'First)))/=0 and 
            Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes) loop 
         --# assert Answer_Count=0 and Amount_Trimmed>=0 and   
   Amount_Trimmed<RR_Type.WireStringType'Last 
         --# and Output_Bytes <= DNS_Types.Packet_Length_Range'Last 
         --# and Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes); 
         Trim_Name( 
            Domainname         => Current_Name, 
            Trimmed_Name       => Trimmed_Name, 
            Qname_Location     => Current_Qname_Location, 
            New_Qname_Location => New_Qname_Location); 
         Create_Response_SOA( 
            Start_Byte      => Start_Byte, 
            Domainname      => Trimmed_name, 
            Qname_Location  => New_Qname_Location, 
            Output_Packet   => Output_Packet, 
            Answer_Count    => Answer_Count, 
            Output_Bytes    => Output_Bytes); 
         Current_Name := Trimmed_Name; 
         Current_Qname_Location := New_Qname_Location; 
         Amount_Trimmed := Amount_Trimmed +     
  Natural(Character'Pos(Domainname(Domainname'First))+1); 
      end loop; 

Figure 4.  Using loop invariants to prove termination 

SPARK annotations begin with “--#”.  Here the 
annotations are loop invariants that serve as both a 
postcondition for one part of the loop and as preconditions 
for the next.  In this case the tools prove that 
Amount_Trimmed is at all times both non-negative and 
below a constant upper bound.  They also show that 
Amount_Trimmed is not modified elsewhere in the loop. 
Given these properties and the last line of the loop, we can 
conclude that Amount_Trimmed is monotonically 
increasing, therefore the loop terminates.   

Note that without the use of this variable and the proof 
annotations, we could not prove loop termination.  This 
would leave open the possibility for the other termination 
conditions to never be reached, something that could be 
exploited under the right circumstances to deny service 
through an infinite loop. 

While IRONSIDES is not completely resistant to packet 
flooding, neither is any other program.  Since it performs 
significantly better than BIND, however, at a minimum it can 
handle as much or more flooding.  Additionally, 
IRONSIDES  contains two features not related to formal 
methods designed to make it more resistant to flooding-based 
denial of service attacks.  First, the number of simultaneous 
TCP connections is limited by a user-tunable parameter.  
Additionally, IRONSIDES enforces a socket timeout, to 
prevent an attacker from holding a connection open for a 
long period of time. 

D. Lessons in Humility 

Despite the use of formal proofs in the determination of 
IRONSIDES security properties, a cautionary tale remains in 
order.  It is always worth remembering that the quality of 
software written in a high level language is only as good as 
the quality of the compiler that generates code from it.  For at 
least one combination of operating system, compiler, and 
optimization level, we were able to replicate a case where a 
fully validated version of IRONSIDES still crashed with an 
exception, due to a code generation error in the Ada compiler 
(Free Software Foundation GNAT) shipped with Ubuntu.   

Clearly blame for bugs of this nature cannot be laid at the 
feet of the tools vendors, since they are not responsible for 
public domain compilers.  Nonetheless, the mere existence of 
such errors is somewhat disturbing.  Until formal methods 
have progressed sufficiently to prove the correctness of 
compilers themselves, practitioners should continue to 
exercise caution in how they compile and test verified  
software. 

It remains true that the use of formal methods and the 
SPARK tools in particular produced results that are both 
impressive and humbling.  Both the authors are experienced 
software engineers, having written compilers, introductory 
programming environments, circuit emulators, and other 
non-trivial software systems. In addition to over 40 years 
combined computer science teaching experience, we have 
consulted for both industry and government.   
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But despite all our experience and credentials, the formal 
methods tools we employed caught boundary conditions and 
potential problems that we should have detected on our own 
but did not.  These include array subscript overruns, unusual 
but possible boundary conditions like single-letter domain 
names, and so forth.  Had the tools not flagged these as 
possible run-time errors, they could have become security 
flaws similar to those in BIND. 

V. CONCLUSIONS AND FUTURE WORK 

We began this project concerned about the large number of 

security vulnerabilities in a vital component of internet 

infrastructure, the Domain Name System.  We had reason to 

believe that formal methods had progressed to the point 

where they could now be employed to produce, for the first 

time, a public-domain version of DNS with proven security 

properties.  We believe we were successful in this objective. 

 

In the course of developing IRONSIDES, we discovered 

that certain tradeoffs can be made to improve performance 

at the expense of formal verification assurance.  But in 

general, our work clearly shows that it is absolutely possible 

to obtain both improved performance and improved 

reliability in software design, provided security 

considerations and formal methods are incorporated at the 

very beginning of the process.   IRONSIDES runs over three 

times faster than BIND under the version of Linux we 

tested.  Unlike BIND, it cannot be subverted or crashed 

through bad packets. 

 

It might be argued that since BIND is open source and 

extremely widely deployed, it is going to be widely targeted 

by hackers and therefore our comparison is not strictly fair.  

However, we would argue that hackers can target 

IRONSIDES all they want (the distribution will be open 

source).  IRONSIDES is provably exception-free.  None of 

the vulnerabilities we have described exist for hackers to 

target. 

 

For a truly fair comparison with BIND, however, we need to 

incorporate more features into IRONSIDES.  In addition to 

support for DNSSEC, future plans include support for 

recursive queries, GUI and web interfaces (IRONSIDES is 

currently command line only) and other more advanced 

features.  Future work could also include testing under more 

operating systems and testing under actual network loading.  

Finally, we believe other implementations of internet 

protocols that suffer from security flaws could benefit from 

the approach described here. 

 

IRONSIDES is in the public domain, and will be distributed 

free of charge.   
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