

IRONSIDES: DNS With No Single-Packet Denial of

Service or Remote Code Execution Vulnerabilities

Martin Carlisle

Barry Fagin

Department of Computer Science

US Air Force Academy

USAFA, CO USA

{martin.carlisle, barry.fagin}@usafa.edu

Abstract—We describe the development of IRONSIDES, an

implementation of DNS that is provably invulnerable to remote

code execution exploits and single-packet denial of service

attacks. Our experimental results show it to be over three times

as fast as BIND, the most common implementation of DNS.

Keywords-DNS, computer security, network security, denial of

service, remote execution, buffer overflow

I. INTRODUCTION

The Internet Domain Name System, or DNS, is an essential
component of internet infrastructure. Responsible for turning
names into IP addresses, its protocols are running on hundreds
of thousands of computers all over the world. Designed
originally to solve a problem of scalability during the early
days and rapid growth of the ARPAnet, it has by any standard
been an incredible success.

This success, however, has come with a price. Because
DNS originates in the earliest days of the internet, before
security issues were well understood, its most popular
implementations are rife with security vulnerabilities. DNS
servers around the world can be crashed by hackers, or even
worse, taken over by them.

To address this problem, we have developed IRONSIDES,
a DNS server that is provably invulnerable to many of the
problems that plague other servers. It achieves this property
through the use of formal methods in its design, in particular
the language Ada and the SPARK formal methods tool set.
Code validated in this way is provably exception-free, contains
no data flow errors, and terminates only in the ways that its
programmers explicitly say that it can. These are very
desirable properties from a computer security perspective.

IRONSIDES is not only stronger from a security
perspective, it also runs faster than its leading competitors. It
provides one data point showing that one need not trade off
reliability for performance in software design.

We begin with an overview of the problem IRONSIDES is
designed to solve. We then discuss why we believe the time is
ripe for formal methods to play a role in improving the security
posture of internet infrastructure software. We describe

IRONSIDES, our experimental results, and conclude with a
summary and directions for future work.

II. THE NATURE OF THE PROBLEM

A. What is BIND?

BIND stands for the Berkeley Internet Name Domain
server. Originally written in 1984, it has been ported to a
number of systems and compilers, and has been maintained in
the public domain since its inception.

According to one source, in 2003 BIND handled about 85%
of all the internet DNS requests [1]. A more recent survey of
over 1 million sampled domains showed that over 75% are
running BIND [2]. Thus security problems in BIND would
seem to merit the most attention, since they would have the
greatest impact. Hackers, of course, know this quite well, and
would naturally focus their efforts on BIND. They have found
and exploited numerous flaws.

B. DNS Security Vulnerabilities

Virtually all DNS servers running today contain significant
security vulnerabilities. The problem is particularly acute in
BIND, due to three factors: a) BIND was the first
implementation of DNS, b) BIND is written in C, a language
where it is easy to make mistakes that cause security
vulnerabilities, and c) BIND is open-source, which means
security holes can quickly be identified and exploited. To deal
with these problems, the latest release of BIND (v9) is a
complete rewrite from scratch. It is a significant improvement,
but flaws are still being found.

Security problems, however, are by no means limited to
BIND. Windows DNS was designed and implemented much
later than BIND, and is proprietary software, but still has
numerous security vulnerabilities.

C. Types of Vulnerabilities

Although there are dozens of security flaws in DNS
software, the known ones can be classified into a few distinct
types:

Globecom 2012 - Communication and Information System Security Symposium

857

• DOS: Denial of Service. This flaw means the server
can be crashed by a client sending it a specially
formatted query.

• RCE: Remote Code Execution. The attacking
program sends a non-standard query that diverts
execution flow to malicious code, giving the attacker
control of DNS on the target machine.

• Spoofing/cache poisoning: Attackers inject incorrect
information into DNS to misdirect traffic from its
correct destination to one selected by the attacker.

• Protocol weaknesses: These exploit security defects
inherent in the DNS protocol or algorithms themselves.

D. Current Status and Impact of DNS Security Vulnerabilities

Just how serious are DNS security flaws? For BIND, as of
this writing an analysis of the security advisories at
http://www.isc.org/ shows a total of 45 vulnerabilities.
Twenty-four of these are remote denial of service attacks, nine
are remote exploitation/execution. The remaining twelve are
weaknesses in cryptographic algorithms, the DNS protocol
itself, or similar problems with the algorithms themselves
rather than their implementation.

The statistics for Windows DNS security flaws are more
difficult to determine. However, our examination of published
Microsoft Security bulletins from the past five years found
eight related to Windows DNS. In reverse chronological order,
they are:

• MS11-058 – two vulnerabilities, one denial of service
and one remote exploit

• MS11-030 – remote code execution

• MS 09-008 – spoofing vulnerability

• MS 08-037 – spoofing vulnerability (2)

• MS 08-020 – spoofing vulnerability

• MS 07-062 – spoofing vulnerability

• MS 07-029 – remote exploitation

• MS 06-041 – remote exploitation vulnerabilities (4)

This gives a total of thirteen known security flaws in
various versions of Windows DNS.

In principle, these vulnerabilities and those of BIND can be
removed by applying the appropriate patches/code updates. In
practice, however, updates are not always applied in timely
fashion, if ever. More importantly, since there is no claim of
formal validation for either of these implementations, it is
likely that both contain further as yet unknown security holes
for hackers to exploit.

From this point forward, we concern ourselves only with
the security and performance of BIND. For a comparison of
IRONSIDES with Windows DNS, the reader is referred to [3].

III. FORMAL METHODS AS A SOLUTION

One reason security flaws exist in software is because our
ability to reason about software has lagged far behind our
ability to write it. It has long been known that in principle it is
possible to prove correctness and security properties of
computer programs. But in practice, the difficulties in doing so
efficiently have proven extremely challenging.

Attempts to use proof techniques from mathematics in
software design belong to the computer science discipline
known as formal methods. For most of computing since the
days of the internet, the use of formal methods for all but the
most trivial of programs has been either impossible or grossly
cost-ineffective. The result has meant that most errors are
discovered and removed from software via pre-release testing.
Further errors are either discovered by users or exploited by the
hacker community, with the results being repaired in post-
release patches. This describes the current state of most
modern security vulnerabilities, and DNS vulnerabilities in
particular.

A. Progress in Formal Methods

Fortunately, our ability to automatically prove program
correctness has improved significantly. As tools have become
more cost-effective and user friendly, the scope and power of
software for which formal methods can be applied has grown
dramatically.

For example, research from Microsoft’s SLAM project was
incorporated into releases of Windows Vista. Based on a
formal methods approach, Vista’s device driver validation
module detects if drivers linked to it violate certain interface
rules [4]. The next year, Heitmeyer and Jeffords [5] reported
the successful use of the SCR requirements model in the Deep
Impact probe and International Space Station software.
Implementing the Common Criteria for Information
Technology Security Evaluation has proven fertile ground for
formal methods, as shown by Heitmeyer and others [6].

In 2008, Airbus described its successful use of the SCADE
system to automatically generate code from formal
specifications in its A340-500/600 aircraft [7]. Sony developed
the firmware for its new contactless IC cards using the VDM++
and VDMTools relying on formal methods [8]. More recently
still, the Verisoft project, funded by the German Federal
Ministry of Education and Research, published claims of proof
of correctness of a real-time operating system known as OLOS,
designed for automotive applications [9].

We have taken advantage of the recent progress in formal
methods to construct and eventually release IRONSIDES, an
open-source, provably exception-free implementation of DNS.
We now turn to a discussion of the source language and tool set
used, and then discuss its functionality, performance, and
security properties.

B. SPARK: A Tool for Creating Provably Correct Programs

The SPARK language and toolset from Praxis Critical
Systems Limited is used in the creation of software systems
with provable correctness and security properties [10]. SPARK
is a subset of Ada, augmented with special annotations. These
annotations appear as ordinary comments to Ada compilers, but

858

are visible to SPARK’s pre-processing tools used to verify the
software. SPARK is a fairly mature technology and has been
used on several projects [11], [12], [13]. Accordingly, given
our prior institutional experience with Ada [14], we chose
SPARK and Ada as the platform for constructing DNS
software that would not be subject to most of the vulnerabilities
that afflict DNS implementations currently deployed around
the globe.

IV. IRONSIDES: FORMAL METHODS AND DNS

IRONSIDES is an Ada/SPARK implementation of the
DNS protocols. Currently, it supports only authoritative name
service, but future versions are expected to support recursive
queries. We are also in the process of adding support for
DNSSEC, the protocol that adds encryption to DNS transaction
to further reduce vulnerability to spoofing and other attacks
[15].

The architecture of IRONSIDES is shown in Figure 1.
IRONSIDES was written from the “ground up” in
Ada/SPARK, using the relevant RFC’s and other descriptions
of DNS as a guide [16-19].

Figure 1. IRONSIDES System Archtiecture

As of this writing, verification of IRONSIDES requires the
generation and proof of 6,183 verification conditions, or VCs.

These include assertions that variables always remain in type,
array bounds are never exceeded, specific pre- and post-
conditions of procedures are always true, and so forth. When a
VC is proved, it is said to be discharged. Discharge of a VC is
accomplished through a multi-stage process using the SPARK
automatic theorem proving tools. For the VCs in IRONSIDES,
2,086 were proved by the first stage of the tools, and 4,033 by
the second, almost 99%. The remaining 1% of VCs were
sufficiently complex to require the use of the Alt-Ergo theorem
prover [20], built into SPARK as an option to discharge VCs
that the other tools cannot.

Software verification is not considered complete until all
VCs are discharged. For IRONSIDES, the complete
verification of code through the discharge of all VCs, from
their initial generation to the final summary report, takes 3
minutes 6 seconds on an IBM ThinkPad X220 Tablet PC with
8GB of memory.

As a result of this process, IRONSIDES code is known to
be free of uninitialized values, data flow errors (e.g. writes that
are never read or values derived from incorrect sources), array
bounds errors, and all runtime exceptions. This renders it
invulnerable to single-packet denial of service attacks and all
remote execution exploits. If IRONSIDES is properly
compiled and configured, it cannot be taken over as a result of
any external input, no matter when the input arrives and no
matter how it is formatted. Also, it cannot be crashed and all
its loops are guaranteed to terminate, which renders it
invulnerable to denial of service attacks that rely on badly
formatted packets. It is, as far as we know, the only DNS server
to make these claims.

A. Experimental Results

In this paper we compare the performance of IRONSIDES
with BIND using the DNS stress testing tool ‘dnsperf” [21].
Because IRONSIDES is still in its early stages of development,
it does not have all of BIND’s features. Any comparison thus
needs to take these differences into account. Following the
style of [22], we show a comparison of IRONSIDES and BIND
in Table I below. Footnotes and parenthetical comments for
BIND are omitted to save space.

TABLE I. IRONSIDES AND BIND FEATURE COMPARISON

Server Authoritative Recursive
Recursion

ACL

Slave

mode
Caching DNSSEC TSIG IPv6

Wildcard
Free

Software
Interface

split

horizon

BIND Y Y Y Y Y Y Y Y Y Y
Web,

command

line
Y

IRONSIDES Y* N N N N
in

progress N Y N Y
command

line N

*The following resource record types are currently supported: A, AAAA, CNAME, MX, NS, PTR, SOA.

Spark_DNS_Main

Zone_File_IO

dfcs.usafa.edu.zonefile

TCP_DNS_Package

Task which

repeatedly looks for

TCP queries

UDP_DNS_Package

Task which

repeatedly looks for

UDP queries

DNS_Network (Ada)

Handles low level

network I/O

Multitask_Process_

DNS_Request (Ada)

Creates new task for

each query

Process_DNS_Request

Interprets packet, does

table lookup and

prepares response

DNS_Network_Receive

SPARK wrapper for

network receives to

guarantee no overflows

DNS_Types

(Byte_Swap)

Task_Limit

Enforces limit on

max # tasks

SPARK_Ada_Command_Line

Read command line argument

Socket_Timeout

(Ada)

Low level routine to

set timeout on

socket

DNS_Table_Pkg

859

IRONSIDES, for example, does not yet support recursive
queries and slave mode operation. Caching will be added once
recursive queries are supported, and DNSSEC/TSIG are in
progress. We do not currently have plans to support
wildcarding or split-horizon DNS. Readers interested in
learning more about these terms are referred to [22].

Our experimental test bed for comparing BIND and
IRONSIDES is shown in Figure 2:

Figure 2. Test Bed for Comparing DNS Implementations

‘dnsperf’ runs on a Backtrack 5.0 client virtual machine.
For the server VM we used Ubuntu 11.0. Testing is done by
starting up the DNS server to be tested and then running
dnsperf. Only one DNS server, server VM, and client VM are
active at any one time.

Since the purpose of the experiment is to measure the
computational performance of the server, all VMs are loaded
on the same computer, in this case an ACE 2600 Workstation
with 8GB of RAM. Using the same computer for client and
server eliminates the effect of network latency. ‘dnsperf’
issues queries over the standard DNS port to whichever server
is listening. The server in turn responds as appropriate. At the
end of a run, the tool generates a performance report.

For each server, we performed three test runs and averaged
the results. (For all tests, the standard deviation was never
higher than 2.1% of the mean, so we believed three test runs
were adequate). The performance of BIND and IRONSIDES is
shown below:

Figure 3. BIND and IRONSIDES Performance

B. Analysis

IRONSIDES is over three times faster than BIND on
Linux. Given IRONSIDES’ superior security posture, we find
these results significant. They show that one need not sacrifice
security for performance in software design.

In fact, it should not be that surprising that there are at least
some instances in which the use of formal methods can
improve performance. Data flow analysis, for example, can
identify redundant or ineffective statements that generate
unnecessary code. Code that has been proven exception-free
no longer needs run-time bounds checking, so that code can be
eliminated as well.

On the other hand, there are also cases where total reliance
on formal methods negatively impacts performance. Given the
current state of the art in formal methods tools, it continues to
be appropriate to allow programmers the flexibility to override
warnings of unproven properties when they believe the
tradeoffs are worth it. This is especially true if they themselves
can see that certain properties hold, even when tools cannot
make that determination.

For example, DNS queries return data of varying size. The
use of dynamically allocated data structures significantly
complicates formal analysis, and renders the ability to bound
the maximum storage required for a program impossible. For
this reason, SPARK requires all data structures to be statically
allocated [9]. Thus routines that return varying amounts of
data use an output data structure of fixed size, defined at
compile-time as a known upper limit.

Data flow analysis of such structures, however, requires
that all such storage be explicitly initialized, to ensure that stale
data is never passed back and that undefined values are never
used. Arrays in SPARK in particular are treated as entire
variables. Thus initializing an array in a loop with a statement
like A(I) := 0 is considered a dataflow error, because only part
of A is set. Instead, the use of Ada aggregates is required to
eliminate dataflow errors.

This “precautionary principle” can have significant
performance consequences. If only one entry of an array is
filled and returned by a procedure, but 128 entries must be
explicitly initialized, this is inefficient and wasteful. Thus in a
few cases throughout the code where such things matter, we
removed aggregate initialization, with explicit instructions to
the tools to ignore all related dataflow errors. We then
manually inspected the code to ensure this did not introduce
any security vulnerabilities. For example, by keeping a simple
index variable to indicate the upper limits of useful data, it can
be shown by inspection that undefined or stale data is never
read. Employing this optimization improved the performance
of IRONSIDES by 29%.

Our experience indicates that allowing users to override formal
proof requirements when appropriate is an important feature
that current formal methods tools should always support.
Since such overriding is optional, users in environments where
manual verification of source code is deemed too risky can
revert to the original, formally verified source code at some
cost in performance.

35.3

107.2

0

100

200

DNS server performance

(queries/ms)

BIND IRONSIDES

860

C. Resistance to Denial of Service Attacks

IRONSIDES is invulnerable to denial of service attacks
caused by badly formatted packets that raise exceptions. But
terminating a server is not the only way to deny service. If the
server can be thrown into an infinite loop, service is just as
effectively denied. IRONSIDES is invulnerable to this form of
service denial as well, because the tools employed help prove
that all of its 85 loops terminate. This is accomplished by

using loop invariant assertions to show that loop variables
monotonically increase and have an upper bound. This is not
accomplished automatically by SPARK, but with appropriate
loop assertion annotations added by the programmer SPARK
can assist in showing these properties to be true.

For example, consider the code below:

 -- Amount_Trimmed is used to guarantee we don't end up in an infinite loop
 while Answer_Count=0 and Amount_Trimmed<RR_Type.WireStringType'Last and
 Natural(Character'Pos(Current_Name(Current_Name'First)))/=0 and
 Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes) loop
 --# assert Answer_Count=0 and Amount_Trimmed>=0 and
 Amount_Trimmed<RR_Type.WireStringType'Last
 --# and Output_Bytes <= DNS_Types.Packet_Length_Range'Last
 --# and Current_Qname_Location <= DNS_Types.QNAME_PTR_RANGE(Output_Bytes);
 Trim_Name(
 Domainname => Current_Name,
 Trimmed_Name => Trimmed_Name,
 Qname_Location => Current_Qname_Location,
 New_Qname_Location => New_Qname_Location);
 Create_Response_SOA(
 Start_Byte => Start_Byte,
 Domainname => Trimmed_name,
 Qname_Location => New_Qname_Location,
 Output_Packet => Output_Packet,
 Answer_Count => Answer_Count,
 Output_Bytes => Output_Bytes);
 Current_Name := Trimmed_Name;
 Current_Qname_Location := New_Qname_Location;
 Amount_Trimmed := Amount_Trimmed +
 Natural(Character'Pos(Domainname(Domainname'First))+1);
 end loop;

Figure 4. Using loop invariants to prove termination

SPARK annotations begin with “--#”. Here the
annotations are loop invariants that serve as both a
postcondition for one part of the loop and as preconditions
for the next. In this case the tools prove that
Amount_Trimmed is at all times both non-negative and
below a constant upper bound. They also show that
Amount_Trimmed is not modified elsewhere in the loop.
Given these properties and the last line of the loop, we can
conclude that Amount_Trimmed is monotonically
increasing, therefore the loop terminates.

Note that without the use of this variable and the proof
annotations, we could not prove loop termination. This
would leave open the possibility for the other termination
conditions to never be reached, something that could be
exploited under the right circumstances to deny service
through an infinite loop.

While IRONSIDES is not completely resistant to packet
flooding, neither is any other program. Since it performs
significantly better than BIND, however, at a minimum it can
handle as much or more flooding. Additionally,
IRONSIDES contains two features not related to formal
methods designed to make it more resistant to flooding-based
denial of service attacks. First, the number of simultaneous
TCP connections is limited by a user-tunable parameter.
Additionally, IRONSIDES enforces a socket timeout, to
prevent an attacker from holding a connection open for a
long period of time.

D. Lessons in Humility

Despite the use of formal proofs in the determination of
IRONSIDES security properties, a cautionary tale remains in
order. It is always worth remembering that the quality of
software written in a high level language is only as good as
the quality of the compiler that generates code from it. For at
least one combination of operating system, compiler, and
optimization level, we were able to replicate a case where a
fully validated version of IRONSIDES still crashed with an
exception, due to a code generation error in the Ada compiler
(Free Software Foundation GNAT) shipped with Ubuntu.

Clearly blame for bugs of this nature cannot be laid at the
feet of the tools vendors, since they are not responsible for
public domain compilers. Nonetheless, the mere existence of
such errors is somewhat disturbing. Until formal methods
have progressed sufficiently to prove the correctness of
compilers themselves, practitioners should continue to
exercise caution in how they compile and test verified
software.

It remains true that the use of formal methods and the
SPARK tools in particular produced results that are both
impressive and humbling. Both the authors are experienced
software engineers, having written compilers, introductory
programming environments, circuit emulators, and other
non-trivial software systems. In addition to over 40 years
combined computer science teaching experience, we have
consulted for both industry and government.

861

But despite all our experience and credentials, the formal
methods tools we employed caught boundary conditions and
potential problems that we should have detected on our own
but did not. These include array subscript overruns, unusual
but possible boundary conditions like single-letter domain
names, and so forth. Had the tools not flagged these as
possible run-time errors, they could have become security
flaws similar to those in BIND.

V. CONCLUSIONS AND FUTURE WORK

We began this project concerned about the large number of

security vulnerabilities in a vital component of internet

infrastructure, the Domain Name System. We had reason to

believe that formal methods had progressed to the point

where they could now be employed to produce, for the first

time, a public-domain version of DNS with proven security

properties. We believe we were successful in this objective.

In the course of developing IRONSIDES, we discovered

that certain tradeoffs can be made to improve performance

at the expense of formal verification assurance. But in

general, our work clearly shows that it is absolutely possible

to obtain both improved performance and improved

reliability in software design, provided security

considerations and formal methods are incorporated at the

very beginning of the process. IRONSIDES runs over three

times faster than BIND under the version of Linux we

tested. Unlike BIND, it cannot be subverted or crashed

through bad packets.

It might be argued that since BIND is open source and

extremely widely deployed, it is going to be widely targeted

by hackers and therefore our comparison is not strictly fair.

However, we would argue that hackers can target

IRONSIDES all they want (the distribution will be open

source). IRONSIDES is provably exception-free. None of

the vulnerabilities we have described exist for hackers to

target.

For a truly fair comparison with BIND, however, we need to

incorporate more features into IRONSIDES. In addition to

support for DNSSEC, future plans include support for

recursive queries, GUI and web interfaces (IRONSIDES is

currently command line only) and other more advanced

features. Future work could also include testing under more

operating systems and testing under actual network loading.

Finally, we believe other implementations of internet

protocols that suffer from security flaws could benefit from

the approach described here.

IRONSIDES is in the public domain, and will be distributed

free of charge.

ACKNOWLEDGMENT

This work was funded by the US Defense Advanced

Research Projects Agency, whose support is gratefully

acknowledged. We also thank AdaCore Technologies and

Altran Praxis for providing technical support on using their

tools. We also wish to thank the USAFA Department of

Computer Science, the Academy’s Director of Research, and

the Academy Center for Cyberspace Research.

REFERENCES

[1] http://www.pugetsoundtechnology.com/training/bind-postfix-apache/
(2003 web server training)

[2] Infoblox survey, http://dns.measurement-
factory.com/surveyssum1.html, 2011

[3] B. Fagin and M. Carlisle, “Provably exception-free DNS: a case
study in formal methods,” ISSRE 2012 (submitted).

[4] B. Beckert et al., “Intelligent systems and formal methods in software
engineering”, IEEE Intelligent Systems, 21(6):73–85, 2006.

[5] C. Heitmeyer and R. Jeffords., "Applying a formal requirements
method to three NASA systems: Lessons learned", Naval Research
Laboratory Research Report #07-1226-0320, Proceedings of the 2007
IEEE Aerospace Conference.

[6] C. Heitmeyer, M. Archer, E. Leonard and J. McLean, “Applying
formal methods to a certifiably secure software system”, IEEE
Transactions on Software Engineering, Vol 34 No 1, Jan-Feb 2008,
pp 82-98

[7] G. Berry, “Synchronous design and verification of critical embedded
systems using SCADE and Esterel”, Proceedings of the Formal
Methods for Industrial Critical Systems, Lecture Notes in Computer
Science, vol. 4916. Springer-Verlag, Berlin, Heidelberg Germany.

[8] J. Fitzgerald, P. G. Larsen and S. Sahara, “VDMTools: Advances in
support for formal modeling in VDM”, SIGPLAN Notices 43, 2
(Feb.), 3–11.

[9] M. Daum, N. Schirmer and M. Schmidt, “From operating-system
correctness to pervasively verified applications”, Integrated Formal
Methods - IFM 2010 6396 (2010) 105-120.

[10] J. Barnes, High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley Publishing, 0-321-13616-0, © 2003.

[11] http://www.adacore.com/2010/08/16/spark-skein/

[12] J. Barnes and R. Chapman, “Engineering the tokeneer enclave
protection software”, Proceedings of the 1st IEEE Symposium on
Secure Software Engineering (2006).

[13] J. Woodcock et al.: Formal methods: Practice and experience. ACM
Comput. Surv. 41, 4, Article 19 (October 2009), 36 pages.

[14] R. Sward, M. Carlisle, B. Fagin and D. Gibson, “The case for Ada at
the USAF Academy”, Proceedings of the ACM SIGAda
International Conference on Ada pp 68-70 (2003).

[15] DNSSEC – The DNS Security Extensions, http://
http://www.dnssec.net/

[16] P. Mockapetris, “Domain Names – Concepts and Facilities”, RFC
1034, November 1987.

[17] P. Mockapetris, “Domain Names –Implementation and
Specification”, RFC 1035, November 1987.

[18] P. Vixie, “Extension Mechanisms for DNS (EDNS0)”, RFC 2671,
August 1999.

[19] Zytrax Inc., “DNS for Rocket Scientists”,
http://www.zytrax.com/books/dns/.

[20] S. Conchon, E. Contejean and J. Kanig, “Ergo : A theorem prover for
polymorphic first-order logic modulo theories”, 2006. Available from
alt-ergo web site at http://alt-ergo.lri.fr/papers/ergo.html.

[21] Nominum, Inc. How to Measure the Performance of a Caching DNS
Server. Available online at http://www.nominum.com/wp-content/
uploads/2010/08/caching-performance.pdf.

[22] Comparison of DNS Server Software, http://en.wikipedia.org/wiki/

862

